Baseline inference Algorithm for the STOIC2021 challenge.

Overview

STOIC2021 Baseline Algorithm

This codebase contains an example submission for the STOIC2021 COVID-19 AI Challenge. As a baseline algorithm, it implements a simple evaluation pipeline for an I3D model that was trained on the STOIC2021 training data. You can use this repo as a template for your submission to the Qualification phase of the STOIC2021 challenge.

If something does not work for you, please do not hesitate to contact us or add a post in the forum. If the problem is related to the code of this repository, please create a new issue on GitHub.

Table of Contents

Before implementing your own algorithm with this template, we recommend to first upload a grand-challenge.org Algorithm based on the unaltered template by following these steps:

Afterwards, you can easily implement your own algorithm, by altering this template and updating the Algorithm you created on grand-challenge.org.

Prerequisites

We recommend using this repository on Linux. If you are using Windows, we recommend installing Windows Subsystem for Linux (WSL). Please watch the official tutorial by Microsoft for installing WSL 2 with GPU support.

  • Have Docker installed.
  • Have an account on grand-challenge.org and make sure that you are a verified user there.

Building, testing, and exporting your container

Building

To test if your system is set up correctly, you can run ./build.sh (Linux) or ./build.bat (Windows), that simply implement this command:

docker build -t stoicalgorithm .

Please note that the next step (testing the container) also runs a build, so this step is not necessary if you are certain that everything is set up correctly.

Testing

To test if the docker container works as expected, test.sh/test.bat will build the container and run it on images provided in the ./test/ folder. It will then check the results (.json files produced by your algorithm) against the .json files in ./test/.

If the tests run successfully, you will see Tests successfully passed....

Note: If you do not have a GPU available on your system, remove the --gpus all flag in test.sh/test.bat to run the test. Note: When you implemented your own algorithm using this template, please update the the .json files in ./test/ according to the output of your algorithm before running test.sh/test.bat.

Exporting

Run export.sh/export.bat to save the docker image to ./STOICAlgorithm.tar.gz. This script runs build.sh/build.bat as well as the following command: docker save stoicalgorithm | gzip -c > STOICAlgorithm.tar.gz

Creating an Algorithm on grand-challenge.org

After building, testing, and exporting your container, you are ready to create an Algorithm on grand-challenge.org. Note that there is no need to alter the algorithm implemented in this baseline repository to start this step. Once you have created an Algorithm on grand-challenge.org, you can later upload new docker containers to that same Algorithm as many times as you wish.

You can create an Algorithm by following this link. Some important fields are:

  • Please choose a Title and Description for your algorithm;
  • Enter CT at Modalities and Lung (Thorax) at Structures;
  • Select a logo to represent your algorithm (preferably square image);
  • For the interfaces of the algorithm, please select CT Image as Inputs, and as Outputs select both Probability COVID-19 and Probability Severe COVID-19;
  • Choose Viewer CIRRUS Core (Public) as a Workstation;
  • At the bottom of the page, indicate that you would like your Docker image to use GPU and how much memory it needs. After filling in the form, click the "Save" button at the bottom of the page to create your Algorithm.

Uploading your container to your Algorithm

Uploading manually

You have now built, tested, and exported your container and created an Algorithm on grand-challenge.org. To upload your container to your Algorithm, go to "Containers" on the page for your Algorithm on grand-challenge.org. Click on "upload a Container" button, and upload your .tar.gz file. You can later update your container by uploading a new .tar.gz file.

Linking a GitHub repo

Instead of uploading the .tar.gz file directly, you can also link your GitHub repo. Once your repo is linked, grand-challenge.org will automatically build the docker image for you, and add the updated container to your Algorithm.

  • First, click "Link Github Repo". You will then see a dropdown box, where your Github repo is listed only if it has the Grand-Challenge app already installed. Usually this is not the case to begin with, so you should click on "link a new Github Repo". This will guide you through the installation of the Grand-challenge app in your repository.
  • After the installation of the app in your repository is complete you should be automatically returned to the Grand Challenge page, where you will find your repository now in the dropdown list (In the case you are not automatically returned to the same page you can find your algorithm and click "Link Github Repo" again). Select your repository from the dropdown list and click "Save".
  • Finally, you need to tag your repository, this will trigger Grand-Challenge to start building the docker container.

Make sure your container is Active

Please note that it can take a while until the container becomes active (The status will change from "Ready: False" to "Active") after uploading it, or after linking your Github repo. Check back later or refresh the URL after some time.

Submitting to the STOIC2021 Qualification phase

With your Algorithm online, you are ready to submit to the STOIC2021 Qualification Leaderboard. On https://stoic2021.grand-challenge.org/, navigate to the "Submit" tab. Navigate to the "Qualification" tab, and select your Algorithm from the drop down list. You can optionally leave a comment with your submission.

Note that, depending on the availability of compute nodes on grand-challenge.org, it may take some time before the evaluation of your Algorithm finishes and its results can be found on the Leaderboard.

Implementing your own algorithm

You can implement your own solution by editing the predict function in ./process.py. Any additional imported packages should be added to ./requirements.txt, and any additional files and folders you add should be explicitly copied in the ./Dockerfile. See ./requirements.txt and ./Dockerfile for examples. To update your algorithm, you can simply test and export your new Docker container, after which you can upload it to your Algorithm. Once your new container is Active, you can resubmit your Algorithm.

Please note that your container will not have access to the internet when executing on grand-challenge.org, so all model weights must be present in your container image. You can test this locally using the --network=none option of docker run.

Good luck with the STOIC2021 COVID-19 AI Challenge!

Tip: Running your algorithm on a test folder:

Once you validated that the algorithm works as expected in the Testing step, you might want to simply run the algorithm on the test folder and check the output .json files for yourself. If you are on a native Linux system you will need to create a results folder that the docker container can write to as follows (WSL users can skip this step).

mkdir ./results
chmod 777 ./results

To write the output of the algorithm to the results folder use the following command:

docker run --rm --memory=11g -v ./test:/input/ -v ./results:/output/ STOICAlgorithm
Owner
Luuk Boulogne
Luuk Boulogne
Code for training and evaluation of the model from "Language Generation with Recurrent Generative Adversarial Networks without Pre-training"

Language Generation with Recurrent Generative Adversarial Networks without Pre-training Code for training and evaluation of the model from "Language G

Amir Bar 253 Sep 14, 2022
This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning"

CSP_Deep_EEG This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning" {https://www

Seyed Mahdi Roostaiyan 2 Nov 08, 2022
Keras udrl - Keras implementation of Upside Down Reinforcement Learning

keras_udrl Keras implementation of Upside Down Reinforcement Learning This is me

Eder Santana 7 Jan 24, 2022
TensorFlow-based neural network library

Sonnet Documentation | Examples Sonnet is a library built on top of TensorFlow 2 designed to provide simple, composable abstractions for machine learn

DeepMind 9.5k Jan 07, 2023
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023
An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners

An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners This is a coarse version for MAE, only make the pretrain model, the fine

FlyEgle 214 Dec 29, 2022
The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.

SCOOD-UDG (ICCV 2021) This repository is the official implementation of the paper: Semantically Coherent Out-of-Distribution Detection Jingkang Yang,

Jake YANG 62 Nov 21, 2022
Soft actor-critic is a deep reinforcement learning framework for training maximum entropy policies in continuous domains.

This repository is no longer maintained. Please use our new Softlearning package instead. Soft Actor-Critic Soft actor-critic is a deep reinforcement

Tuomas Haarnoja 752 Jan 07, 2023
Home for cuQuantum Python & NVIDIA cuQuantum SDK C++ samples

Welcome to the cuQuantum repository! This public repository contains two sets of files related to the NVIDIA cuQuantum SDK: samples: All C/C++ sample

NVIDIA Corporation 147 Dec 27, 2022
使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,包含C++和Python两种版本的程序实现。本套程序只依赖opencv库就可以运行, 从而彻底摆脱对任何深度学习框架的依赖。

YOLOP-opencv-dnn 使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,依然是包含C++和Python两种版本的程序实现 onnx文件从百度云盘下载,链接:https://pan.baidu.com/s/1A_9cldU

178 Jan 07, 2023
This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object Tracking with TRansformer.

MOTR: End-to-End Multiple-Object Tracking with TRansformer This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object

348 Jan 07, 2023
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Jiaxi Jiang 282 Jan 02, 2023
A machine learning library for spiking neural networks. Supports training with both torch and jax pipelines, and deployment to neuromorphic hardware.

Rockpool Rockpool is a Python package for developing signal processing applications with spiking neural networks. Rockpool allows you to build network

SynSense 21 Dec 14, 2022
A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks

A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks without the use of any outside machine learning libraries - all from scratch.

Kordel K. France 2 Nov 14, 2022
Unofficial implement with paper SpeakerGAN: Speaker identification with conditional generative adversarial network

Introduction This repository is about paper SpeakerGAN , and is unofficially implemented by Mingming Huang ( 7 Jan 03, 2023

Brain tumor detection using Convolution-Neural Network (CNN)

Detect and Classify Brain Tumor using CNN. A system performing detection and classification by using Deep Learning Algorithms using Convolution-Neural Network (CNN).

assia 1 Feb 07, 2022
Task-based end-to-end model learning in stochastic optimization

Task-based End-to-end Model Learning in Stochastic Optimization This repository is by Priya L. Donti, Brandon Amos, and J. Zico Kolter and contains th

CMU Locus Lab 164 Dec 29, 2022
Unofficial implementation of MLP-Mixer: An all-MLP Architecture for Vision

MLP-Mixer: An all-MLP Architecture for Vision This repo contains PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision. Usage : impo

Rishikesh (ऋषिकेश) 175 Dec 23, 2022
ISTR: End-to-End Instance Segmentation with Transformers (https://arxiv.org/abs/2105.00637)

This is the project page for the paper: ISTR: End-to-End Instance Segmentation via Transformers, Jie Hu, Liujuan Cao, Yao Lu, ShengChuan Zhang, Yan Wa

Jie Hu 182 Dec 19, 2022