An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners

Overview

An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners

This is a coarse version for MAE, only make the pretrain model, the finetune and linear is comming soon.

1. Introduction

This repo is the MAE-vit model which impelement with pytorch, no reference any reference code so this is a non-official version. Because of the limitation of time and machine, I only trained the vit-tiny model for encoder. mae

2. Enveriments

  • python 3.7+
  • pytorch 1.7.1
  • pillow
  • timm
  • opencv-python

3. Model Config

Pretrain Config

  • BaseConfig
    img_size = 224,
    patch_size = 16,
  • Encoder The encoder if follow the Vit-tiny model config
    encoder_dim = 192,
    encoder_depth = 12,
    encoder_heads = 3,
  • Decoder The decoder is followed the kaiming paper config.
    decoder_dim = 512,
    decoder_depth = 8,
    decoder_heads = 16, 
  • Mask
    1. We use the shuffle patch after Sin-Cos position embeeding for encoder.
    2. Mask the shuffle patch, keep the mask index.
    3. Unshuffle the mask patch and combine with the encoder embeeding before the position embeeding for decoder.
    4. Restruction decoder embeeidng by convtranspose.
    5. Build the mask map with mask index for cal the loss(only consider the mask patch).

Finetune Config

Wait for the results

TODO:

  • Finetune Trainig
  • Linear Training

4. Results

decoder Restruction the imagenet validation image from pretrain model, compare with the kaiming results, restruction quality is less than he. May be the encoder model is too small TT.

The Mae-Vit-tiny pretrain models is here, you can download to test the restruction result. Put the ckpt in weights folder.

5. Training & Inference

  • dataset prepare

    /data/home/imagenet/xxx.jpeg, 0
    /data/home/imagenet/xxx.jpeg, 1
    ...
    /data/home/imagenet/xxx.jpeg, 999
    
  • Training

    1. Pretrain

      #!/bin/bash
      OMP_NUM_THREADS=1
      MKL_NUM_THREADS=1
      export OMP_NUM_THREADS
      export MKL_NUM_THREADS
      cd MAE-Pytorch;
      CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -W ignore -m torch.distributed.launch --nproc_per_node 8 train_mae.py \
      --batch_size 256 \
      --num_workers 32 \
      --lr 1.5e-4 \
      --optimizer_name "adamw" \
      --cosine 1 \
      --max_epochs 300 \
      --warmup_epochs 40 \
      --num-classes 1000 \
      --crop_size 224 \
      --patch_size 16 \
      --color_prob 0.0 \
      --calculate_val 0 \
      --weight_decay 5e-2 \
      --lars 0 \
      --mixup 0.0 \
      --smoothing 0.0 \
      --train_file $train_file \
      --val_file $val_file \
      --checkpoints-path $ckpt_folder \
      --log-dir $log_folder
    2. Finetune TODO:

      • training
    3. Linear TODO:

      • training
  • Inference

    1. pretrian
    python mae_test.py --test_image xxx.jpg --ckpt weights.pth
    1. classification TODO:
      • training

6. TODO

  • VIT-BASE model training.
  • SwinTransformers for MAE.
  • Finetune & Linear training.

Finetune is trainig, the weights may be comming soon.

Owner
FlyEgle
JOYY AI GROUP - Machine Learning Engineer(Computer Vision)
FlyEgle
Naszilla is a Python library for neural architecture search (NAS)

A repository to compare many popular NAS algorithms seamlessly across three popular benchmarks (NASBench 101, 201, and 301). You can implement your ow

270 Jan 03, 2023
A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization

sam.pytorch A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization ( Foret+2020) Paper, Official implementa

Ryuichiro Hataya 102 Dec 28, 2022
This tool converts a Nondeterministic Finite Automata (NFA) into a Deterministic Finite Automata (DFA)

This tool converts a Nondeterministic Finite Automata (NFA) into a Deterministic Finite Automata (DFA)

Quinn Herden 1 Feb 04, 2022
Consensus score for tripadvisor

ContripScore ContripScore is essentially a score that combines an Internet platform rating and a consensus rating from sentiment analysis (For instanc

Pepe 1 Jan 13, 2022
Perfect implement. Model shared. x0.5 (Top1:60.646) and 1.0x (Top1:69.402).

Shufflenet-v2-Pytorch Introduction This is a Pytorch implementation of faceplusplus's ShuffleNet-v2. For details, please read the following papers:

423 Dec 07, 2022
An educational resource to help anyone learn deep reinforcement learning.

Status: Maintenance (expect bug fixes and minor updates) Welcome to Spinning Up in Deep RL! This is an educational resource produced by OpenAI that ma

OpenAI 7.6k Jan 09, 2023
This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Koltun"

Learning to propose objects This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Ko

Philipp Krähenbühl 90 Sep 10, 2021
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
An intelligent, flexible grammar of machine learning.

An english representation of machine learning. Modify what you want, let us handle the rest. Overview Nylon is a python library that lets you customiz

Palash Shah 79 Dec 02, 2022
Tutorial to set up TensorFlow Object Detection API on the Raspberry Pi

A tutorial showing how to set up TensorFlow's Object Detection API on the Raspberry Pi

Evan 1.1k Dec 26, 2022
Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

DingDing 143 Jan 01, 2023
"SOLQ: Segmenting Objects by Learning Queries", SOLQ is an end-to-end instance segmentation framework with Transformer.

SOLQ: Segmenting Objects by Learning Queries This repository is an official implementation of the paper SOLQ: Segmenting Objects by Learning Queries.

MEGVII Research 179 Jan 02, 2023
Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs

Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs MATLAB implementation of the paper: P. Mercado, F. Tudisco, and M. Hein,

Pedro Mercado 6 May 26, 2022
Implementation of "Selection via Proxy: Efficient Data Selection for Deep Learning" from ICLR 2020.

Selection via Proxy: Efficient Data Selection for Deep Learning This repository contains a refactored implementation of "Selection via Proxy: Efficien

Stanford Future Data Systems 70 Nov 16, 2022
Deep Q Learning with OpenAI Gym and Pokemon Showdown

pokemon-deep-learning An openAI gym project for pokemon involving deep q learning. Made by myself, Sam Little, and Layton Webber. This code captures g

2 Dec 22, 2021
Torch-ngp - A pytorch implementation of the hash encoder proposed in instant-ngp

HashGrid Encoder (WIP) A pytorch implementation of the HashGrid Encoder from ins

hawkey 1k Jan 01, 2023
PyTorch code for ICPR 2020 paper Future Urban Scene Generation Through Vehicle Synthesis

Future urban scene generation through vehicle synthesis This repository contains Pytorch code for the ICPR2020 paper "Future Urban Scene Generation Th

Alessandro Simoni 4 Oct 11, 2021
Manifold-Mixup implementation for fastai V2

Manifold Mixup Unofficial implementation of ManifoldMixup (Proceedings of ICML 19) for fast.ai (V2) based on Shivam Saboo's pytorch implementation of

Nestor Demeure 16 Jul 25, 2022
Finetuning Pipeline

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022
Equivariant Imaging: Learning Beyond the Range Space

[Project] Equivariant Imaging: Learning Beyond the Range Space Project about the

Georges Le Bellier 3 Feb 06, 2022