The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.

Overview

SCOOD-UDG (ICCV 2021)

paper   projectpage   gdrive  onedrive

This repository is the official implementation of the paper:

Semantically Coherent Out-of-Distribution Detection
Jingkang Yang, Haoqi Wang, Litong Feng, Xiaopeng Yan, Huabin Zheng, Wayne Zhang, Ziwei Liu
Proceedings of the IEEE International Conference on Computer Vision (ICCV 2021)

udg

Dependencies

We use conda to manage our dependencies, and CUDA 10.1 to run our experiments.

You can specify the appropriate cudatoolkit version to install on your machine in the environment.yml file, and then run the following to create the conda environment:

conda env create -f environment.yml
conda activate scood

SC-OOD Dataset

scood

The SC-OOD dataset introduced in the paper can be downloaded here.

gdrive onedrive

Our codebase accesses the dataset from the root directory in a folder named data/ by default, i.e.

├── ...
├── data
│   ├── images
│   └── imglist
├── scood
├── test.py
├── train.py
├── ...

Training

The entry point for training is the train.py script. The hyperparameters for each experiment is specified by a .yml configuration file (examples given in configs/train/).

All experiment artifacts are saved in the specified args.output_dir directory.

python train.py \
    --config configs/train/cifar10_udg.yml \
    --data_dir data \
    --output_dir output/cifar10_udg

Testing

Evaluation for a trained model is performed by the test.py script, with its hyperparameters also specified by a .yml configuration file (examples given in configs/test/)

Within the configuration file, you can also specify which post-processing OOD method to use (e.g. ODIN or Energy-based OOD detector (EBO)).

The evaluation results are saved in a .csv file as specified.

python test.py \
    --config configs/test/cifar10.yml \
    --checkpoint output/cifar10_udg/best.ckpt \
    --data_dir data \
    --csv_path output/cifar10_udg/results.csv

Results

CIFAR-10 (+ Tiny-ImageNet) Results on ResNet18

You can run the following script (specifying the data and output directories) which perform training + testing for our main experimental results:

CIFAR-10, UDG

bash scripts/cifar10_udg.sh data_dir output_dir

We report the mean ± std results from the current codebase as follows, which match the performance reported in our original paper.

Metrics ODIN EBO OE UDG (ours)
FPR95 ↓ 50.76 ± 3.39 50.70 ± 2.86 54.99 ± 4.06 39.94 ± 3.77
AUROC ↑ 82.11 ± 0.24 83.99 ± 1.05 87.48 ± 0.61 93.27 ± 0.64
AUPR In ↑ 73.07 ± 0.40 76.84 ± 1.56 85.75 ± 1.70 93.36 ± 0.56
AUPR Out ↑ 85.06 ± 0.29 85.44 ± 0.73 86.95 ± 0.28 91.21 ± 1.23
[email protected] 0.30 ± 0.04 0.26 ± 0.09 7.09 ± 0.48 16.36 ± 4.33
[email protected] 1.22 ± 0.28 1.46 ± 0.18 13.69 ± 0.78 32.99 ± 4.16
[email protected] 6.13 ± 0.72 8.17 ± 0.96 29.60 ± 5.31 59.14 ± 2.60
[email protected] 39.61 ± 0.72 47.57 ± 3.33 64.33 ± 3.44 81.04 ± 1.46

License and Acknowledgements

This project is open-sourced under the MIT license.

The codebase is refactored by Ang Yi Zhe, and maintained by Jingkang Yang and Ang Yi Zhe.

Citation

If you find our repository useful for your research, please consider citing our paper:

@InProceedings{yang2021scood,
    author = {Yang, Jingkang and Wang, Haoqi and Feng, Litong and Yan, Xiaopeng and Zheng, Huabin and Zhang, Wayne and Liu, Ziwei},
    title = {Semantically Coherent Out-of-Distribution Detection},
    booktitle = {Proceedings of the IEEE International Conference on Computer Vision},
    year = {2021}
}
Owner
Jake YANG
[email protected] PhD Student
Jake YANG
[BMVC'21] Official PyTorch Implementation of Grounded Situation Recognition with Transformers

Grounded Situation Recognition with Transformers Paper | Model Checkpoint This is the official PyTorch implementation of Grounded Situation Recognitio

Junhyeong Cho 18 Jul 19, 2022
Code for paper "Learning to Reweight Examples for Robust Deep Learning"

learning-to-reweight-examples Code for paper Learning to Reweight Examples for Robust Deep Learning. [arxiv] Environment We tested the code on tensorf

Uber Research 261 Jan 01, 2023
Fedlearn支持前沿算法研发的Python工具库 | Fedlearn algorithm toolkit for researchers

FedLearn-algo Installation Development Environment Checklist python3 (3.6 or 3.7) is required. To configure and check the development environment is c

89 Nov 14, 2022
TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

2.6k Jan 04, 2023
CVPR 2021: "Generating Diverse Structure for Image Inpainting With Hierarchical VQ-VAE"

Diverse Structure Inpainting ArXiv | Papar | Supplementary Material | BibTex This repository is for the CVPR 2021 paper, "Generating Diverse Structure

152 Nov 04, 2022
Utilities and information for the signals.numer.ai tournament

dsignals Utilities and information for the signals.numer.ai tournament using eodhistoricaldata.com eodhistoricaldata.com provides excellent historical

Degerhan Usluel 23 Dec 18, 2022
Tf alloc - Simplication of GPU allocation for Tensorflow2

tf_alloc Simpliying GPU allocation for Tensorflow Developer: korkite (Junseo Ko)

Junseo Ko 3 Feb 10, 2022
HDMapNet: A Local Semantic Map Learning and Evaluation Framework

HDMapNet_devkit Devkit for HDMapNet. HDMapNet: A Local Semantic Map Learning and Evaluation Framework Qi Li, Yue Wang, Yilun Wang, Hang Zhao [Paper] [

Tsinghua MARS Lab 421 Jan 04, 2023
[CVPR 2022] TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing

TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing (CVPR 2022) This repository provides the official PyTorch impleme

Billy XU 128 Jan 03, 2023
Post-Training Quantization for Vision transformers.

PTQ4ViT Post-Training Quantization Framework for Vision Transformers. We use the twin uniform quantization method to reduce the quantization error on

Zhihang Yuan 61 Dec 28, 2022
[CIKM 2021] Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. This repo contains the PyTorch code and implementation for the paper E

Akuchi 18 Dec 22, 2022
Code for the CVPR 2021 paper: Understanding Failures of Deep Networks via Robust Feature Extraction

Welcome to Barlow Barlow is a tool for identifying the failure modes for a given neural network. To achieve this, Barlow first creates a group of imag

Sahil Singla 33 Dec 05, 2022
A Unified Framework and Analysis for Structured Knowledge Grounding

UnifiedSKG 📚 : Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models Code for paper UnifiedSKG: Unifying and Mu

HKU NLP Group 370 Dec 21, 2022
Self-Regulated Learning for Egocentric Video Activity Anticipation

Self-Regulated Learning for Egocentric Video Activity Anticipation Introduction This is a Pytorch implementation of the model described in our paper:

qzhb 13 Sep 23, 2022
Source code for Transformer-based Multi-task Learning for Disaster Tweet Categorisation (UCD's participation in TREC-IS 2020A, 2020B and 2021A).

Source code for "UCD participation in TREC-IS 2020A, 2020B and 2021A". *** update at: 2021/05/25 This repo so far relates to the following work: Trans

Congcong Wang 4 Oct 19, 2021
Official PyTorch implementation of "Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning" (ICCV2021 Oral)

MeTAL - Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning (ICCV2021 Oral) Sungyong Baik, Janghoon Choi, Heewon Kim, Dohee Cho, Jaes

Sungyong Baik 44 Dec 29, 2022
Hybrid CenterNet - Hybrid-supervised object detection / Weakly semi-supervised object detection

Hybrid-Supervised Object Detection System Object detection system trained by hybrid-supervision/weakly semi-supervision (HSOD/WSSOD): This project is

5 Dec 10, 2022
Deep Reinforcement Learning based autonomous navigation for quadcopters using PPO algorithm.

PPO-based Autonomous Navigation for Quadcopters This repository contains an implementation of Proximal Policy Optimization (PPO) for autonomous naviga

Bilal Kabas 16 Nov 11, 2022
Code for "Retrieving Black-box Optimal Images from External Databases" (WSDM 2022)

Retrieving Black-box Optimal Images from External Databases (WSDM 2022) We propose how a user retreives an optimal image from external databases of we

joisino 5 Apr 13, 2022
The official re-implementation of the Neurips 2021 paper, "Targeted Neural Dynamical Modeling".

Targeted Neural Dynamical Modeling Note: This is a re-implementation (in Tensorflow2) of the original TNDM model. We do not plan to further update the

6 Oct 05, 2022