Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Overview

Neural Networks For Chess

cover

Free Book

  • Grab your free PDF copy HERE
  • Buy a printed copy at HERE or HERE

Donations are welcome:

paypal

Contents

AlphaZero, Leela Chess Zero and Stockfish NNUE revolutionized Computer Chess. This book gives a complete introduction into the technical inner workings of such engines.

The book is split into four chapters:

  1. The first chapter introduces neural networks and covers all the basic building blocks that are used to build deep networks such as those used by AlphaZero. Contents include the perceptron, back-propagation and gradient descent, classification, regression, multilayer perpectron, vectorization techniques, convolutional netowrks, squeeze and exciation networks, fully connected networks, batch normalization and rectified linear units, residual layers, overfitting and underfitting.

  2. The second chapter introduces classical search techniques used for chess engines as well as those used by AlphaZero. Contents include minimax, alpha-beta search, and Monte Carlo tree search.

  3. The third chapter shows how modern chess engines are designed. Aside from the ground-breaking AlphaGo, AlphaGo Zero and AlphaZero we cover Leela Chess Zero, Fat Fritz, Fat Fritz 2 and Effectively Updateable Neural Networks (NNUE) as well as Maia.

  4. The fourth chapter is about implementing a miniaturized AlphaZero. Hexapawn, a minimalistic version of chess, is used as an example for that. Hexapawn is solved by minimax search and training positions for supervised learning are generated. Then as a comparison, an AlphaZero-like training loop is implemented where training is done via self-play combined with reinforcement learning. Finally, AlphaZero-like training and supervised training are compared.

Source Code

Just clone this repository or directly browse the files. You will find here all sources of the examples of the book.

About

During COVID, I worked a lot from home and saved approximately 1.5 hours of commuting time each day. I decided to use that time to do something useful (?) and wrote a book about computer chess. In the end I decided to release the book for free.

Profits

To be completely transparent, here is what I make from every paper copy sold on Amazon. The book retails for $16.95 (about 15 Euro).

  • printing costs $4.04
  • Amazon takes $6.78
  • my royalties are $6.13

Errata

If you find mistakes, please report them here - your help is appreciated!

You might also like...
All course materials for the Zero to Mastery Deep Learning with TensorFlow course.
All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

PyTorch implementation of 1712.06087
PyTorch implementation of 1712.06087 "Zero-Shot" Super-Resolution using Deep Internal Learning

Unofficial PyTorch implementation of "Zero-Shot" Super-Resolution using Deep Internal Learning Unofficial Implementation of 1712.06087 "Zero-Shot" Sup

[IJCAI-2021] A benchmark of data-free knowledge distillation from paper
[IJCAI-2021] A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation"

DataFree A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation" Authors: Gongfa

FuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space OptimizationFuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space Optimization
FuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space OptimizationFuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space Optimization

FuseDream This repo contains code for our paper (paper link): FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimizat

Free-duolingo-plus - Duolingo account creator that uses your invite code to get you free duolingo plus
Free-duolingo-plus - Duolingo account creator that uses your invite code to get you free duolingo plus

free-duolingo-plus duolingo account creator that uses your invite code to get yo

Free like Freedom

This is all very much a work in progress! More to come! ( We're working on it though! Stay tuned!) Installation Open an Anaconda Prompt (in Windows, o

MLSpace: Hassle-free machine learning & deep learning development

MLSpace: Hassle-free machine learning & deep learning development

Experimental solutions to selected exercises from the book [Advances in Financial Machine Learning by Marcos Lopez De Prado]

Advances in Financial Machine Learning Exercises Experimental solutions to selected exercises from the book Advances in Financial Machine Learning by

Comments
  • 'Board' object has no attribute 'outcome'

    'Board' object has no attribute 'outcome'

    I just executed python mcts.py and received an error message: 34 0 Traceback (most recent call last): File "mcts.py", line 134, in payout = simulate(node) File "mcts.py", line 63, in simulate while(board.outcome(claim_draw = True) == None): AttributeError: 'Board' object has no attribute 'outcome'

    opened by barvinog 5
  • Invalid Reduction Key auto.

    Invalid Reduction Key auto.

    Thank you for the source code of Chapter 5. I executed python mnx_generateTrainingData.py - OK Then python sup_network.py - OK

    Then I executed python sup_eval.py and got the error :

    Traceback (most recent call last): File "sup_eval.py", line 6, in model = keras.models.load_model("supervised_model.keras") File "/home/barvinog/anaconda3/lib/python3.7/site-packages/keras/engine/saving.py", line 492, in load_wrapper return load_function(*args, **kwargs) File "/home/barvinog/anaconda3/lib/python3.7/site-packages/keras/engine/saving.py", line 584, in load_model model = _deserialize_model(h5dict, custom_objects, compile) File "/home/barvinog/anaconda3/lib/python3.7/site-packages/keras/engine/saving.py", line 369, in _deserialize_model sample_weight_mode=sample_weight_mode) File "/home/barvinog/anaconda3/lib/python3.7/site-packages/keras/backend/tensorflow_backend.py", line 75, in symbolic_fn_wrapper return func(*args, **kwargs) File "/home/barvinog/anaconda3/lib/python3.7/site-packages/keras/engine/training.py", line 229, in compile self.total_loss = self._prepare_total_loss(masks) File "/home/barvinog/anaconda3/lib/python3.7/site-packages/keras/engine/training.py", line 692, in _prepare_total_loss y_true, y_pred, sample_weight=sample_weight) File "/home/barvinog/anaconda3/lib/python3.7/site-packages/keras/losses.py", line 73, in call losses, sample_weight, reduction=self.reduction) File "/home/barvinog/anaconda3/lib/python3.7/site-packages/keras/utils/losses_utils.py", line 156, in compute_weighted_loss Reduction.validate(reduction) File "/home/barvinog/anaconda3/lib/python3.7/site-packages/keras/utils/losses_utils.py", line 35, in validate raise ValueError('Invalid Reduction Key %s.' % key) ValueError: Invalid Reduction Key auto.

    opened by barvinog 2
  • Chapter 2 convolution.py

    Chapter 2 convolution.py

    Hello Dominik, I'm a Python novice, but an experienced chess player and long ago a developer of software for infinite dimensional optimization. I've installed the latest Python on a 64 cores Ryzen Threadripper with two NVIDIA 3090 graphic cards. I study your very helpful overview of modern chess engine programming and started with Chapter 2 where except convolution.py all examples work fine. I have installed module scikit-image as skimage doesn't load correctly. Then (without changing the source of convolution.py) I get the following warning

    PS C:\Users\diete\Downloads\neural_network_chess-1.3\chapter_02> python.exe .\convolution.py (640, 480) Lossy conversion from float64 to uint8. Range [-377.0, 433.0]. Convert image to uint8 prior to saving to suppress this warning. PS C:\Users\diete\Downloads\neural_network_chess-1.3\chapter_02>

    and after some seconds python exits without any more output. Help with this problem is kindly appreciated. Dieter

    opened by d-kraft 1
Releases(v1.5)
Owner
Dominik Klein
random code snippets, including the chess program Jerry
Dominik Klein
Building a real-time environment using webcam frame division in OpenCV and classify cropped images using a fine-tuned vision transformers on hybryd datasets samples for facial emotion recognition.

Visual Transformer for Facial Emotion Recognition (FER) This project has the aim to build an efficient Visual Transformer for the Facial Emotion Recog

Mario Sessa 8 Dec 12, 2022
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021) Jiaxi Jiang, Kai Zhang, Radu Timofte Computer Vision Lab, ETH Zurich, Switzerland 🔥

Jiaxi Jiang 282 Jan 02, 2023
This repository contains the code for "Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based Bias in NLP".

Self-Diagnosis and Self-Debiasing This repository contains the source code for Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based

Timo Schick 62 Dec 12, 2022
Registration Loss Learning for Deep Probabilistic Point Set Registration

RLLReg This repository contains a Pytorch implementation of the point set registration method RLLReg. Details about the method can be found in the 3DV

Felix Järemo Lawin 35 Nov 02, 2022
Pytorch implementation of DeePSiM

Pytorch implementation of DeePSiM

1 Nov 05, 2021
Stacked Generative Adversarial Networks

Stacked Generative Adversarial Networks This repository contains code for the paper "Stacked Generative Adversarial Networks", CVPR 2017. Part of the

Xun Huang 241 May 07, 2022
Object tracking and object detection is applied to track golf puts in real time and display stats/games.

Putting_Game Object tracking and object detection is applied to track golf puts in real time and display stats/games. Works best with the Perfect Prac

Max 1 Dec 29, 2021
CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces

CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces This is a repository for the following pape

17 Oct 13, 2022
Algorithmic trading using machine learning.

Algorithmic Trading This machine learning algorithm was built using Python 3 and scikit-learn with a Decision Tree Classifier. The program gathers sto

Sourav Biswas 101 Nov 10, 2022
RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting

RATCHET: RAdiological Text Captioning for Human Examined Thoraxes RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting. Based on t

26 Nov 14, 2022
ANEA: Distant Supervision for Low-Resource Named Entity Recognition

ANEA: Distant Supervision for Low-Resource Named Entity Recognition ANEA is a tool to automatically annotate named entities in unlabeled text based on

Saarland University Spoken Language Systems Group 15 Mar 30, 2022
An adaptive hierarchical energy management strategy for hybrid electric vehicles

An adaptive hierarchical energy management strategy This project contains the source code of an adaptive hierarchical EMS combining heuristic equivale

19 Dec 13, 2022
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data (CVPR 2022) Potentials of primitive shapes f

31 Sep 27, 2022
sense-py-AnishaBaishya created by GitHub Classroom

Compute Statistics Here we compute statistics for a bunch of numbers. This project uses the unittest framework to test functionality. Pass the tests T

1 Oct 21, 2021
Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021)

Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021) Overview Prerequisites Linux Pytho

Shaojie Li 34 Mar 31, 2022
Franka Emika Panda manipulator kinematics&dynamics simulation

pybullet_sim_panda Pybullet simulation environment for Franka Emika Panda Dependency pybullet, numpy, spatial_math_mini Simple example (please check s

0 Jan 20, 2022
Voice Conversion by CycleGAN (语音克隆/语音转换):CycleGAN-VC3

CycleGAN-VC3-PyTorch 中文说明 | English This code is a PyTorch implementation for paper: CycleGAN-VC3: Examining and Improving CycleGAN-VCs for Mel-spectr

Kun Ma 110 Dec 24, 2022
[ICML 2021] “ Self-Damaging Contrastive Learning”, Ziyu Jiang, Tianlong Chen, Bobak Mortazavi, Zhangyang Wang

Self-Damaging Contrastive Learning Introduction The recent breakthrough achieved by contrastive learning accelerates the pace for deploying unsupervis

VITA 51 Dec 29, 2022
Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training"

Saliency Guided Training Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training" by Aya Abdelsalam Ismail, Hector Cor

8 Sep 22, 2022
Official Implementation of Neural Splines

Neural Splines: Fitting 3D Surfaces with Inifinitely-Wide Neural Networks This repository contains the official implementation of the CVPR 2021 (Oral)

Francis Williams 56 Nov 29, 2022