A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.

Overview

GFNet-Pytorch (NeurIPS 2020)

This repo contains the official code and pre-trained models for the glance and focus network (GFNet).

Citation

@inproceedings{NeurIPS2020_7866,
        title = {Glance and Focus: a Dynamic Approach to Reducing Spatial Redundancy in Image Classification},
       author = {Wang, Yulin and Lv, Kangchen and Huang, Rui and Song, Shiji and Yang, Le and Huang, Gao},
    booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
         year = {2020},
}

Update on 2020/10/08: Release Pre-trained Models and the Inference Code on ImageNet.

Update on 2020/12/28: Release Training Code.

Introduction

Inspired by the fact that not all regions in an image are task-relevant, we propose a novel framework that performs efficient image classification by processing a sequence of relatively small inputs, which are strategically cropped from the original image. Experiments on ImageNet show that our method consistently improves the computational efficiency of a wide variety of deep models. For example, it further reduces the average latency of the highly efficient MobileNet-V3 on an iPhone XS Max by 20% without sacrificing accuracy.

Results

  • Top-1 accuracy on ImageNet v.s. Multiply-Adds

  • Top-1 accuracy on ImageNet v.s. Inference Latency (ms) on an iPhone XS Max

  • Visualization

Pre-trained Models

Backbone CNNs Patch Size T Links
ResNet-50 96x96 5 Tsinghua Cloud / Google Drive
ResNet-50 128x128 5 Tsinghua Cloud / Google Drive
DenseNet-121 96x96 5 Tsinghua Cloud / Google Drive
DenseNet-169 96x96 5 Tsinghua Cloud / Google Drive
DenseNet-201 96x96 5 Tsinghua Cloud / Google Drive
RegNet-Y-600MF 96x96 5 Tsinghua Cloud / Google Drive
RegNet-Y-800MF 96x96 5 Tsinghua Cloud / Google Drive
RegNet-Y-1.6GF 96x96 5 Tsinghua Cloud / Google Drive
MobileNet-V3-Large (1.00) 96x96 3 Tsinghua Cloud / Google Drive
MobileNet-V3-Large (1.00) 128x128 3 Tsinghua Cloud / Google Drive
MobileNet-V3-Large (1.25) 128x128 3 Tsinghua Cloud / Google Drive
EfficientNet-B2 128x128 4 Tsinghua Cloud / Google Drive
EfficientNet-B3 128x128 4 Tsinghua Cloud / Google Drive
EfficientNet-B3 144x144 4 Tsinghua Cloud / Google Drive
  • What are contained in the checkpoints:
**.pth.tar
├── model_name: name of the backbone CNNs (e.g., resnet50, densenet121)
├── patch_size: size of image patches (i.e., H' or W' in the paper)
├── model_prime_state_dict, model_state_dict, fc, policy: state dictionaries of the four components of GFNets
├── model_flops, policy_flops, fc_flops: Multiply-Adds of inferring the encoder, patch proposal network and classifier for once
├── flops: a list containing the Multiply-Adds corresponding to each length of the input sequence during inference
├── anytime_classification: results of anytime prediction (in Top-1 accuracy)
├── dynamic_threshold: the confidence thresholds used in budgeted batch classification
├── budgeted_batch_classification: results of budgeted batch classification (a two-item list, [0] and [1] correspond to the two coordinates of a curve)

Requirements

  • python 3.7.7
  • pytorch 1.3.1
  • torchvision 0.4.2
  • pyyaml 5.3.1 (for RegNets)

Evaluate Pre-trained Models

Read the evaluation results saved in pre-trained models

CUDA_VISIBLE_DEVICES=0 python inference.py --checkpoint_path PATH_TO_CHECKPOINTS  --eval_mode 0

Read the confidence thresholds saved in pre-trained models and infer the model on the validation set

CUDA_VISIBLE_DEVICES=0 python inference.py --data_url PATH_TO_DATASET --checkpoint_path PATH_TO_CHECKPOINTS  --eval_mode 1

Determine confidence thresholds on the training set and infer the model on the validation set

CUDA_VISIBLE_DEVICES=0 python inference.py --data_url PATH_TO_DATASET --checkpoint_path PATH_TO_CHECKPOINTS  --eval_mode 2

The dataset is expected to be prepared as follows:

ImageNet
├── train
│   ├── folder 1 (class 1)
│   ├── folder 2 (class 1)
│   ├── ...
├── val
│   ├── folder 1 (class 1)
│   ├── folder 2 (class 1)
│   ├── ...

Training

  • Here we take training ResNet-50 (96x96, T=5) for example. All the used initialization models and stage-1/2 checkpoints can be found in Tsinghua Cloud / Google Drive. Currently, this link includes ResNet and MobileNet-V3. We will update it as soon as possible. If you need other helps, feel free to contact us.

  • The Results in the paper is based on 2 Tesla V100 GPUs. For most of experiments, up to 4 Titan Xp GPUs may be enough.

Training stage 1, the initializations of global encoder (model_prime) and local encoder (model) are required:

CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --data_url PATH_TO_DATASET --train_stage 1 --model_arch resnet50 --patch_size 96 --T 5 --print_freq 10 --model_prime_path PATH_TO_CHECKPOINTS  --model_path PATH_TO_CHECKPOINTS

Training stage 2, a stage-1 checkpoint is required:

CUDA_VISIBLE_DEVICES=0 python train.py --data_url PATH_TO_DATASET --train_stage 2 --model_arch resnet50 --patch_size 96 --T 5 --print_freq 10 --checkpoint_path PATH_TO_CHECKPOINTS

Training stage 3, a stage-2 checkpoint is required:

CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --data_url PATH_TO_DATASET --train_stage 3 --model_arch resnet50 --patch_size 96 --T 5 --print_freq 10 --checkpoint_path PATH_TO_CHECKPOINTS

Contact

If you have any question, please feel free to contact the authors. Yulin Wang: [email protected].

Acknowledgment

Our code of MobileNet-V3 and EfficientNet is from here. Our code of RegNet is from here.

To Do

  • Update the code for visualizing.

  • Update the code for MIXED PRECISION TRAINING。

Owner
Rainforest Wang
Rainforest Wang
[CVPR 2021] Region-aware Adaptive Instance Normalization for Image Harmonization

RainNet — Official Pytorch Implementation Region-aware Adaptive Instance Normalization for Image Harmonization Jun Ling, Han Xue, Li Song*, Rong Xie,

130 Dec 11, 2022
Some toy examples of score matching algorithms written in PyTorch

toy_gradlogp This repo implements some toy examples of the following score matching algorithms in PyTorch: ssm-vr: sliced score matching with variance

Ending Hsiao 21 Dec 26, 2022
Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 short.

Session-aware BERT4Rec Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 shor

Jamie J. Seol 22 Dec 13, 2022
Cooperative Driving Dataset: a dataset for multi-agent driving scenarios

Cooperative Driving Dataset (CODD) The Cooperative Driving dataset is a synthetic dataset generated using CARLA that contains lidar data from multiple

Eduardo Henrique Arnold 124 Dec 28, 2022
An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available actions

Agar.io_Q-Learning_AI An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available act

1 Jun 09, 2022
some classic model used to segment the medical images like CT、X-ray and so on

github_project This is a project for medical image segmentation. This project includes common medical image segmentation models such as U-net, FCN, De

2 Mar 30, 2022
PlenOctrees: NeRF-SH Training & Conversion

PlenOctrees Official Repo: NeRF-SH training and conversion This repository contains code to train NeRF-SH and to extract the PlenOctree, constituting

Alex Yu 323 Dec 29, 2022
DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

8.3k Dec 31, 2022
A PyTorch implementation of "Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning", IJCAI-21

MERIT A PyTorch implementation of our IJCAI-21 paper Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning. Depen

Graph Analysis & Deep Learning Laboratory, GRAND 32 Jan 02, 2023
PyTorch implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN in PyTorch PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. * All samples in READM

Taehoon Kim 1k Jan 04, 2023
[ICCV2021] Learning to Track Objects from Unlabeled Videos

Unsupervised Single Object Tracking (USOT) 🌿 Learning to Track Objects from Unlabeled Videos Jilai Zheng, Chao Ma, Houwen Peng and Xiaokang Yang 2021

53 Dec 28, 2022
Official implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" (ICCV Workshops 2021: RSL-CV).

Official PyTorch implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" This is the implementation of the paper "Syn

Marcella Astrid 11 Oct 07, 2022
Deep Learning (with PyTorch)

Deep Learning (with PyTorch) This notebook repository now has a companion website, where all the course material can be found in video and textual for

Alfredo Canziani 6.2k Jan 07, 2023
Character-Input - Create a program that asks the user to enter their name and their age

Character-Input Create a program that asks the user to enter their name and thei

PyLaboratory 0 Feb 06, 2022
Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP

Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP Abstract: We introduce a method that allows to automatically se

Daniil Pakhomov 134 Dec 19, 2022
Wind Speed Prediction using LSTMs in PyTorch

Implementation of Deep-Forecast using PyTorch Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting Adapted from original implementation Setu

Onur Kaplan 151 Dec 14, 2022
This is the official pytorch implementation of AutoDebias, an automatic debiasing method for recommendation.

AutoDebias This is the official pytorch implementation of AutoDebias, a debiasing method for recommendation system. AutoDebias is proposed in the pape

Dong Hande 77 Nov 25, 2022
Building Ellee — A GPT-3 and Computer Vision Powered Talking Robotic Teddy Bear With Human Level Conversation Intelligence

Using an object detection and facial recognition system built on MobileNetSSDV2 and Dlib and running on an NVIDIA Jetson Nano, a GPT-3 model, Google Speech Recognition, Amazon Polly and servo motors,

24 Oct 26, 2022
Learning Dense Representations of Phrases at Scale (Lee et al., 2020)

DensePhrases DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time. While it efficiently searches th

Princeton Natural Language Processing 540 Dec 30, 2022
THIS IS THE **OLD** PYMC PROJECT. PLEASE USE PYMC3 INSTEAD:

Introduction Version: 2.3.8 Authors: Chris Fonnesbeck Anand Patil David Huard John Salvatier Web site: https://github.com/pymc-devs/pymc Documentation

PyMC 7.2k Jan 07, 2023