This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Overview

Locus

This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

More information: https://research.csiro.au/robotics/locus-pr/

Paper Pre-print: https://arxiv.org/abs/2011.14497

Method overview.

Locus is a global descriptor for large-scale place recognition using sequential 3D LiDAR point clouds. It encodes topological relationships and temporal consistency of scene components to obtain a discriminative and view-point invariant scene representation.

Usage

Set up environment

This project has been tested on Ubuntu 18.04 (with Open3D 0.11, tensorflow 1.8.0, pcl 1.8.1 and python-pcl 0.3.0). Set up the requirments as follows:

  • Create conda environment with open3d and tensorflow-1.8 with python 3.6:
conda create --name locus_env python=3.6
conda activate locus_env
pip install -r requirements.txt
  • Set up python-pcl. See utils/setup_python_pcl.txt. For further instructions, see here.
  • Segment feature extraction uses the pre-trained model from ethz-asl/segmap. Download and copy the relevant content in segmap_data into ~/.segmap/:
./utils/get_segmap_data.bash

Descriptor Generation

Segment and generate Locus descriptor for each scan in a selected sequence (e.g., KITTI sequence 06):

python main.py --seq '06'

The following flags can be used with main.py:

  • --seq: KITTI dataset sequence number.
  • --aug_type: Scan augmentation type (optional for robustness tests).
  • --aug_param: Parameter corresponding to above augmentation.

Evaluation

Sequence-wise place-recognition using extracted descriptors:

python ./evaluation/place_recognition.py  --seq  '06' 

Evaluation of place-recognition performance using Precision-Recall curves (multiple sequences):

python ./evaluation/pr_curve.py 

Additional scripts

Robustness tests:

Code of the robustness tests carried out in section V.C in paper. Extract Locus descriptors from scans of select augmentation:

python main.py --seq '06' --aug_type 'rot' --aug_param 180 # Rotate about z-axis by random angle between 0-180 degrees. 
python main.py --seq '06' --aug_type 'occ' --aug_param 90 # Occlude sector of 90 degrees about random heading. 

Evaluation is done as before. For vizualization, set config.yml->segmentation->visualize to True.

Testing individual modules:

python ./segmentation/extract_segments.py # Extract and save Euclidean segments (S).
python ./segmentation/extract_segment_features.py # Extract and save SegMap-CNN features (Fa) for given S.
python ./descriptor_generation/spatial_pooling.py # Generate and save spatial segment features for given S and Fa.
python ./descriptor_generation/temporal_pooling.py # Generate and save temporal segment features for given S and Fa.
python ./descriptor_generation/locus_descriptor.py # Generate and save Locus global descriptor using above.

Citation

If you find this work usefull in your research, please consider citing:

@inproceedings{vid2021locus,
  title={Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling},
  author={Vidanapathirana, Kavisha and Moghadam, Peyman and Harwood, Ben and Zhao, Muming and Sridharan, Sridha and Fookes, Clinton},
  booktitle={IEEE International Conference on Robotics and Automation (ICRA)},
  year={2021},
  eprint={arXiv preprint arXiv:2011.14497}
}

Acknowledgment

Functions from 3rd party have been acknowledged at the respective function definitions or readme files. This project was mainly inspired by the following: ethz-asl/segmap and irapkaist/scancontext.

Contact

For questions/feedback,

Owner
Robotics and Autonomous Systems Group
CSIRO's Robotics and Autonomous Systems Group
Robotics and Autonomous Systems Group
Supervised Classification from Text (P)

MSc-Thesis Module: Masters Research Thesis Language: Python Grade: 75 Title: An investigation of supervised classification of therapeutic process from

Matthew Laws 1 Nov 22, 2021
BanditPAM: Almost Linear-Time k-Medoids Clustering

BanditPAM: Almost Linear-Time k-Medoids Clustering This repo contains a high-performance implementation of BanditPAM from BanditPAM: Almost Linear-Tim

254 Dec 12, 2022
Tooling for converting STAC metadata to ODC data model

手语识别 0、使用到的模型 (1). openpose,作者:CMU-Perceptual-Computing-Lab https://github.com/CMU-Perceptual-Computing-Lab/openpose (2). 图像分类classification,作者:Bubbl

Open Data Cube 65 Dec 20, 2022
Inference pipeline for our participation in the FeTA challenge 2021.

feta-inference Inference pipeline for our participation in the FeTA challenge 2021. Team name: TRABIT Installation Download the two folders in https:/

Lucas Fidon 2 Apr 13, 2022
Deep Learning segmentation suite designed for 2D microscopy image segmentation

Deep Learning segmentation suite dessigned for 2D microscopy image segmentation This repository provides researchers with a code to try different enco

7 Nov 03, 2022
KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)

KoGPT KoGPT (Korean Generative Pre-trained Transformer) https://github.com/kakaobrain/kogpt https://huggingface.co/kakaobrain/kogpt Model Descriptions

Kakao Brain 799 Dec 28, 2022
Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN"

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

68 Dec 21, 2022
HyperCube: Implicit Field Representations of Voxelized 3D Models

HyperCube: Implicit Field Representations of Voxelized 3D Models Authors: Magdalena Proszewska, Marcin Mazur, Tomasz Trzcinski, Przemysław Spurek [Pap

Magdalena Proszewska 3 Mar 09, 2022
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives

HashNeRF-pytorch Instant-NGP recently introduced a Multi-resolution Hash Encodin

Yash Sanjay Bhalgat 616 Jan 06, 2023
An intuitive library to extract features from time series

Time Series Feature Extraction Library Intuitive time series feature extraction This repository hosts the TSFEL - Time Series Feature Extraction Libra

Associação Fraunhofer Portugal Research 589 Jan 04, 2023
Emblaze - Interactive Embedding Comparison

Emblaze - Interactive Embedding Comparison Emblaze is a Jupyter notebook widget for visually comparing embeddings using animated scatter plots. It bun

CMU Data Interaction Group 77 Nov 24, 2022
Implementation of Artificial Neural Network Algorithm

Artificial Neural Network This repository contain implementation of Artificial Neural Network Algorithm in several programming languanges and framewor

Resha Dwika Hefni Al-Fahsi 1 Sep 14, 2022
一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。

captcha_server 一个免费开源一键搭建的通用验证码识别平台,大部分常见的中英数验证码识别都没啥问题。 使用方法 python = 3.8 以上环境 pip install -r requirements.txt -i https://pypi.douban.com/simple gun

Sml2h3 189 Dec 02, 2022
System-oriented IR evaluations are limited to rather abstract understandings of real user behavior

Validating Simulations of User Query Variants This repository contains the scripts of the experiments and evaluations, simulated queries, as well as t

IR Group at Technische Hochschule Köln 2 Nov 23, 2022
PERIN is Permutation-Invariant Semantic Parser developed for MRP 2020

PERIN: Permutation-invariant Semantic Parsing David Samuel & Milan Straka Charles University Faculty of Mathematics and Physics Institute of Formal an

ÚFAL 40 Jan 04, 2023
Simple Python application to transform Serial data into OSC messages

SerialToOSC-Bridge Simple Python application to transform Serial data into OSC messages. The current purpose is to be a compatibility layer between ha

Division of Applied Acoustics at Chalmers University of Technology 3 Jun 03, 2021
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022
CVPR2021: Temporal Context Aggregation Network for Temporal Action Proposal Refinement

Temporal Context Aggregation Network - Pytorch This repo holds the pytorch-version codes of paper: "Temporal Context Aggregation Network for Temporal

Zhiwu Qing 63 Sep 27, 2022
Our solution for SSN Invente 2021's Hackathon

Our solution for SSN Invente 2021's Hackathon. To help maitain godowns in a pristine and safe condition using raspberry pi.

1 Jan 12, 2022
CN24 is a complete semantic segmentation framework using fully convolutional networks

Build status: master (production branch): develop (development branch): Welcome to the CN24 GitHub repository! CN24 is a complete semantic segmentatio

Computer Vision Group Jena 123 Jul 14, 2022