This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Overview

Locus

This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

More information: https://research.csiro.au/robotics/locus-pr/

Paper Pre-print: https://arxiv.org/abs/2011.14497

Method overview.

Locus is a global descriptor for large-scale place recognition using sequential 3D LiDAR point clouds. It encodes topological relationships and temporal consistency of scene components to obtain a discriminative and view-point invariant scene representation.

Usage

Set up environment

This project has been tested on Ubuntu 18.04 (with Open3D 0.11, tensorflow 1.8.0, pcl 1.8.1 and python-pcl 0.3.0). Set up the requirments as follows:

  • Create conda environment with open3d and tensorflow-1.8 with python 3.6:
conda create --name locus_env python=3.6
conda activate locus_env
pip install -r requirements.txt
  • Set up python-pcl. See utils/setup_python_pcl.txt. For further instructions, see here.
  • Segment feature extraction uses the pre-trained model from ethz-asl/segmap. Download and copy the relevant content in segmap_data into ~/.segmap/:
./utils/get_segmap_data.bash

Descriptor Generation

Segment and generate Locus descriptor for each scan in a selected sequence (e.g., KITTI sequence 06):

python main.py --seq '06'

The following flags can be used with main.py:

  • --seq: KITTI dataset sequence number.
  • --aug_type: Scan augmentation type (optional for robustness tests).
  • --aug_param: Parameter corresponding to above augmentation.

Evaluation

Sequence-wise place-recognition using extracted descriptors:

python ./evaluation/place_recognition.py  --seq  '06' 

Evaluation of place-recognition performance using Precision-Recall curves (multiple sequences):

python ./evaluation/pr_curve.py 

Additional scripts

Robustness tests:

Code of the robustness tests carried out in section V.C in paper. Extract Locus descriptors from scans of select augmentation:

python main.py --seq '06' --aug_type 'rot' --aug_param 180 # Rotate about z-axis by random angle between 0-180 degrees. 
python main.py --seq '06' --aug_type 'occ' --aug_param 90 # Occlude sector of 90 degrees about random heading. 

Evaluation is done as before. For vizualization, set config.yml->segmentation->visualize to True.

Testing individual modules:

python ./segmentation/extract_segments.py # Extract and save Euclidean segments (S).
python ./segmentation/extract_segment_features.py # Extract and save SegMap-CNN features (Fa) for given S.
python ./descriptor_generation/spatial_pooling.py # Generate and save spatial segment features for given S and Fa.
python ./descriptor_generation/temporal_pooling.py # Generate and save temporal segment features for given S and Fa.
python ./descriptor_generation/locus_descriptor.py # Generate and save Locus global descriptor using above.

Citation

If you find this work usefull in your research, please consider citing:

@inproceedings{vid2021locus,
  title={Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling},
  author={Vidanapathirana, Kavisha and Moghadam, Peyman and Harwood, Ben and Zhao, Muming and Sridharan, Sridha and Fookes, Clinton},
  booktitle={IEEE International Conference on Robotics and Automation (ICRA)},
  year={2021},
  eprint={arXiv preprint arXiv:2011.14497}
}

Acknowledgment

Functions from 3rd party have been acknowledged at the respective function definitions or readme files. This project was mainly inspired by the following: ethz-asl/segmap and irapkaist/scancontext.

Contact

For questions/feedback,

Owner
Robotics and Autonomous Systems Group
CSIRO's Robotics and Autonomous Systems Group
Robotics and Autonomous Systems Group
PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

halo 368 Dec 06, 2022
A python module for configuration of block devices

Blivet is a python module for system storage configuration. CI status Licence See COPYING Installation From Fedora repositories Blivet is available in

78 Dec 14, 2022
Official PyTorch implementation of RobustNet (CVPR 2021 Oral)

RobustNet (CVPR 2021 Oral): Official Project Webpage Codes and pretrained models will be released soon. This repository provides the official PyTorch

Sungha Choi 173 Dec 21, 2022
Automatic labeling, conversion of different data set formats, sample size statistics, model cascade

Simple Gadget Collection for Object Detection Tasks Automatic image annotation Conversion between different annotation formats Obtain statistical info

llt 4 Aug 24, 2022
End-to-End Object Detection with Fully Convolutional Network

This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.

472 Dec 22, 2022
Code and data accompanying our SVRHM'21 paper.

Code and data accompanying our SVRHM'21 paper. Requires tensorflow 1.13, python 3.7, scikit-learn, and pytorch 1.6.0 to be installed. Python scripts i

5 Nov 17, 2021
Block-wisely Supervised Neural Architecture Search with Knowledge Distillation (CVPR 2020)

DNA This repository provides the code of our paper: Blockwisely Supervised Neural Architecture Search with Knowledge Distillation. Illustration of DNA

Changlin Li 215 Dec 19, 2022
《DeepViT: Towards Deeper Vision Transformer》(2021)

DeepViT This repo is the official implementation of "DeepViT: Towards Deeper Vision Transformer". The repo is based on the timm library (https://githu

109 Dec 02, 2022
Individual Tree Crown classification on WorldView-2 Images using Autoencoder -- Group 9 Weak learners - Final Project (Machine Learning 2020 Course)

Created by Olga Sutyrina, Sarah Elemili, Abduragim Shtanchaev and Artur Bille Individual Tree Crown classification on WorldView-2 Images using Autoenc

2 Dec 08, 2022
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

730 Jan 09, 2023
Official Implementation for "StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery" (ICCV 2021 Oral)

StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery (ICCV 2021 Oral) Run this model on Replicate Optimization: Global directions: Mapper: Check ou

3.3k Jan 05, 2023
A simple, fully convolutional model for real-time instance segmentation.

You Only Look At CoefficienTs ██╗ ██╗ ██████╗ ██╗ █████╗ ██████╗████████╗ ╚██╗ ██╔╝██╔═══██╗██║ ██╔══██╗██╔════╝╚══██╔══╝ ╚██

Daniel Bolya 4.6k Dec 30, 2022
render sprites into your desktop environment as shaped windows using GTK

spritegtk render static or animated sprites into your desktop environment as dynamic shaped windows using GTK requires pycairo and PYGobject: pip inst

hermit 20 Oct 27, 2022
YOLOPのPythonでのONNX推論サンプル

YOLOP-ONNX-Video-Inference-Sample YOLOPのPythonでのONNX推論サンプルです。 ONNXモデルは、hustvl/YOLOP/weights を使用しています。 Requirement OpenCV 3.4.2 or later onnxruntime 1.

KazuhitoTakahashi 8 Sep 05, 2022
NHL 94 AI contests

nhl94-ai The end goals of this project is to: Train Models that play NHL 94 Support AI vs AI contests in NHL 94 Provide an improved AI opponent for NH

Mathieu Poliquin 2 Dec 06, 2021
A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented in Python.

Reinforcement-Learning-Notebooks A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented

Pulkit Khandelwal 1k Dec 28, 2022
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
Self-Supervised Methods for Noise-Removal

SSMNR | Self-Supervised Methods for Noise Removal Image denoising is the task of removing noise from an image, which can be formulated as the task of

1 Jan 16, 2022
Python KNN model: Predicting a probability of getting a work visa. Tableau: Non-immigrant visas over the years.

The value of international students to the United States. Probability of getting a non-immigrant visa. Project timeline: Jan 2021 - April 2021 Project

Zinaida Dvoskina 2 Nov 21, 2021
Some simple programs built in Python: webcam with cv2 that detects eyes and face, with grayscale filter

Programas en Python Algunos programas simples creados en Python: 📹 Webcam con c

Madirex 1 Feb 15, 2022