CVPR2021: Temporal Context Aggregation Network for Temporal Action Proposal Refinement

Overview

Temporal Context Aggregation Network - Pytorch

This repo holds the pytorch-version codes of paper: "Temporal Context Aggregation Network for Temporal Action Proposal Refinement", which is accepted in CVPR 2021.

[Arxiv Preprint]

Update

  • 2021.07.02: Update proposals, checkpoints, features for TCANet!
  • 2021.05.31: Repository for TCANet

Contents

Paper Introduction

image

Temporal action proposal generation aims to estimate temporal intervals of actions in untrimmed videos, which is a challenging yet important task in the video understanding field. The proposals generated by current methods still suffer from inaccurate temporal boundaries and inferior confidence used for retrieval owing to the lack of efficient temporal modeling and effective boundary context utilization. In this paper, we propose Temporal Context Aggregation Network (TCANet) to generate high-quality action proposals through "local and global" temporal context aggregation and complementary as well as progressive boundary refinement. Specifically, we first design a Local-Global Temporal Encoder (LGTE), which adopts the channel grouping strategy to efficiently encode both "local and global" temporal inter-dependencies. Furthermore, both the boundary and internal context of proposals are adopted for frame-level and segment-level boundary regressions, respectively. Temporal Boundary Regressor (TBR) is designed to combine these two regression granularities in an end-to-end fashion, which achieves the precise boundaries and reliable confidence of proposals through progressive refinement. Extensive experiments are conducted on three challenging datasets: HACS, ActivityNet-v1.3, and THUMOS-14, where TCANet can generate proposals with high precision and recall. By combining with the existing action classifier, TCANet can obtain remarkable temporal action detection performance compared with other methods. Not surprisingly, the proposed TCANet won the 1st place in the CVPR 2020 - HACS challenge leaderboard on temporal action localization task.

Prerequisites

These code is implemented in Pytorch 1.5.1 + Python3.

Code and Data Preparation

Get the code

Clone this repo with git, please use:

git clone https://github.com/qingzhiwu/Temporal-Context-Aggregation-Network-Pytorch.git

Download Datasets

We support experiments with publicly available dataset HACS for temporal action proposal generation now. To download this dataset, please use official HACS downloader to download videos from the YouTube.

To extract visual feature, we adopt Slowfast model pretrained on the training set of HACS. Please refer this repo Slowfast to extract features.

For convenience of training and testing, we provide the rescaled feature at here Google Cloud or Baidu Yun[Code:x3ve].

In Baidu Yun Link, we provide:

-- features/: SlowFast features for training, validation and testing.
-- checkpoint/: Pre-trained TCANet model for SlowFast features provided by us.
-- proposals/: BMN proposals processed by us.
-- classification/: The best classification results we used in paper and 2020 HACS challenge.

Training and Testing of TCANet

All configurations of TCANet are saved in opts.py, where you can modify training and model parameter.

1. Unzip Proposals

tar -jxvf hacs.bmn.pem.slowfast101.t200.wd1e-5.warmup.pem_input_100.tar.bz2 -C ./
tar -jxvf hacs.bmn.pem.slowfast101.t200.wd1e-5.warmup.pem_input.tar.bz2 -C ./

2. Unzip Features

# for training features
cd features/
cat slowfast101.epoch9.87.52.finetune.pool.t.keep.t.s8.training.tar.bz2.*>slowfast101.epoch9.87.52.finetune.pool.t.keep.t.s8.training.tar.gz
tar -zxvf slowfast101.epoch9.87.52.finetune.pool.t.keep.t.s8.training.tar.gz
tar -jxvf slowfast101.epoch9.87.52.finetune.pool.t.keep.t.s8.training.tar.bz2 -C .

# for validation features
cd features/
cat slowfast101.epoch9.87.52.finetune.pool.t.keep.t.s8.validation.tar.bz2.*>slowfast101.epoch9.87.52.finetune.pool.t.keep.t.s8.validation.tar.gz
tar -zxvf slowfast101.epoch9.87.52.finetune.pool.t.keep.t.s8.validation.tar.gz
tar -jxvf slowfast101.epoch9.87.52.finetune.pool.t.keep.t.s8.validation.tar.bz2 -C .

# for testing features
cd features/
cat slowfast101.epoch9.87.52.finetune.pool.t.keep.t.s8.testing.tar.bz2.*>slowfast101.epoch9.87.52.finetune.pool.t.keep.t.s8.testing.tar.gz
tar -zxvf slowfast101.epoch9.87.52.finetune.pool.t.keep.t.s8.testing.tar.gz
tar -jxvf slowfast101.epoch9.87.52.finetune.pool.t.keep.t.s8.testing.tar.bz2 -C .

4. Training of TCANet

python3 main_tcanet.py --mode train \
--checkpoint_path ./checkpoint/ \
--video_anno /path/to/HACS_segments_v1.1.1.json \
--feature_path /path/to/feature/ \
--train_proposals_path /path/to/pem_input_100/in/proposals \ 
--test_proposals_path /path/to/pem_input/in/proposals 

We also provide trained TCANet model in ./checkpoint in our BaiduYun Link.

6. Testing of TCANet

# We split the dataset into 4 parts, and inference these parts on 4 gpus
python3 main_tcanet.py  --mode inference --part_idx 0 --gpu 0 --classifier_result /path/to/classifier/{}94.32.json
python3 main_tcanet.py  --mode inference --part_idx 1 --gpu 1 --classifier_result /path/to/classifier/{}94.32.json
python3 main_tcanet.py  --mode inference --part_idx 2 --gpu 2 --classifier_result /path/to/classifier/{}94.32.json
python3 main_tcanet.py  --mode inference --part_idx 3 --gpu 3 --classifier_result /path/to/classifier/{}94.32.json

7. Post processing and generate final results

python3 main_tcanet.py  --mode inference --part_idx -1

Other Info

Citation

Please cite the following paper if you feel TCANet useful to your research

@inproceedings{qing2021temporal,
  title={Temporal Context Aggregation Network for Temporal Action Proposal Refinement},
  author={Qing, Zhiwu and Su, Haisheng and Gan, Weihao and Wang, Dongliang and Wu, Wei and Wang, Xiang and Qiao, Yu and Yan, Junjie and Gao, Changxin and Sang, Nong},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={485--494},
  year={2021}
}

Contact

For any question, please file an issue or contact

Zhiwu Qing: [email protected]
Owner
Zhiwu Qing
Zhiwu Qing
Pseudo lidar - (CVPR 2019) Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving

Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving This paper has been accpeted by Conference o

Yan Wang 881 Dec 27, 2022
Retina blood vessel segmentation with a convolutional neural network

Retina blood vessel segmentation with a convolution neural network (U-net) This repository contains the implementation of a convolutional neural netwo

Orobix 1.2k Jan 06, 2023
A denoising diffusion probabilistic model (DDPM) tailored for conditional generation of protein distograms

Denoising Diffusion Probabilistic Model for Proteins Implementation of Denoising Diffusion Probabilistic Model in Pytorch. It is a new approach to gen

Phil Wang 108 Nov 23, 2022
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022
Code for Mining the Benefits of Two-stage and One-stage HOI Detection

Status: Archive (code is provided as-is, no updates expected) PPO-EWMA [Paper] This is code for training agents using PPO-EWMA and PPG-EWMA, introduce

OpenAI 33 Dec 15, 2022
Ipython notebook presentations for getting starting with basic programming, statistics and machine learning techniques

Data Science 45-min Intros Every week*, our data science team @Gnip (aka @TwitterBoulder) gets together for about 50 minutes to learn something. While

Scott Hendrickson 1.6k Dec 31, 2022
This is the official pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering" on VQA Task

🌈 ERASOR (RA-L'21 with ICRA Option) Official page of "ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object Removal for Static 3D Point C

Hyungtae Lim 225 Dec 29, 2022
Improving Contrastive Learning by Visualizing Feature Transformation, ICCV 2021 Oral

Improving Contrastive Learning by Visualizing Feature Transformation This project hosts the codes, models and visualization tools for the paper: Impro

Bingchen Zhao 83 Dec 15, 2022
Easily benchmark PyTorch model FLOPs, latency, throughput, max allocated memory and energy consumption

⏱ pytorch-benchmark Easily benchmark model inference FLOPs, latency, throughput, max allocated memory and energy consumption Install pip install pytor

Lukas Hedegaard 21 Dec 22, 2022
π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis

π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis Project Page | Paper | Data Eric Ryan Chan*, Marco Monteiro*, Pe

375 Dec 31, 2022
Anonymous implementation of KSL

k-Step Latent (KSL) Implementation of k-Step Latent (KSL) in PyTorch. Representation Learning for Data-Efficient Reinforcement Learning [Paper] Code i

1 Nov 10, 2021
simple demo codes for Learning to Teach with Dynamic Loss Functions

Learning to Teach with Dynamic Loss Functions This repo contains the simple demo for the NeurIPS-18 paper: Learning to Teach with Dynamic Loss Functio

Lijun Wu 15 Dec 30, 2021
DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation

DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation By Qing Xu, Wenting Duan and Na He Requirements pytorch==1.1

Qing Xu 20 Dec 09, 2022
Deep Sketch-guided Cartoon Video Inbetweening

Cartoon Video Inbetweening Paper | DOI | Video The source code of Deep Sketch-guided Cartoon Video Inbetweening by Xiaoyu Li, Bo Zhang, Jing Liao, Ped

Xiaoyu Li 37 Dec 22, 2022
Weighted K Nearest Neighbors (kNN) algorithm implemented on python from scratch.

kNN_From_Scratch I implemented the k nearest neighbors (kNN) classification algorithm on python. This algorithm is used to predict the classes of new

1 Dec 14, 2021
UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering

UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering This repository holds all the code and data for our recent work on

Mohamed El Banani 118 Dec 06, 2022
Sparse R-CNN: End-to-End Object Detection with Learnable Proposals, CVPR2021

End-to-End Object Detection with Learnable Proposal, CVPR2021

Peize Sun 1.2k Dec 27, 2022
Implementation of Continuous Sparsification, a method for pruning and ticket search in deep networks

Continuous Sparsification Implementation of Continuous Sparsification (CS), a method based on l_0 regularization to find sparse neural networks, propo

Pedro Savarese 23 Dec 07, 2022
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

63 Aug 11, 2022
SAPIEN Manipulation Skill Benchmark

ManiSkill Benchmark SAPIEN Manipulation Skill Benchmark (abbreviated as ManiSkill, pronounced as "Many Skill") is a large-scale learning-from-demonstr

Hao Su's Lab, UCSD 107 Jan 08, 2023