π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis

Related tags

Deep Learningpi-GAN
Overview

π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis

Project Page | Paper | Data

Eric Ryan Chan*, Marco Monteiro*, Petr Kellnhofer, Jiajun Wu, Gordon Wetzstein
*denotes equal contribution

This is the official implementation of the paper "π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis".

π-GAN is a novel generative model for high-quality 3D aware image synthesis.

results2.mp4

Training a Model

The main training script can be found in train.py. Majority of hyperparameters for training and evaluation are set in the curriculums.py file. (see file for more details) We provide recommended curriculums for CelebA, Cats, and CARLA.

Relevant Flags:

Set the output directory: --output_dir=[output directory]

Set the model loading directory: --load_dir=[load directory]

Set the current training curriculum: --curriculum=[curriculum]

Set the port for distributed training: --port=[port]

To start training:

On one GPU for CelebA: CUDA_VISIBLE_DEVICES=0 python3 train.py --curriculum CelebA --output_dir celebAOutputDir

On multiple GPUs, simply list cuda visible devices in a comma-separated list: CUDA_VISIBLE_DEVICES=1,3 python3 train.py --curriculum CelebA --output_dir celebAOutputDir

To continue training from another run specify the --load_dir=path/to/directory flag.

Model Results and Evaluation

Evaluation Metrics

To generate real images for evaluation run python fid_evaluation --dataset CelebA --img_size 128 --num_imgs 8000. To calculate fid/kid/inception scores run python eval_metrics.py path/to/generator.pth --real_image_dir path/to/real_images/directory --curriculum CelebA --num_images 8000.

Rendering Images

python render_multiview_images.py path/to/generator.pth --curriculum CelebA --seeds 0 1 2 3

For best visual results, load the EMA parameters, use truncation, increase the resolution (e.g. to 512 x 512) and increase the number of depth samples (e.g. to 24 or 36).

Rendering Videos

python render_video.py path/to/generator.pth --curriculum CelebA --seeds 0 1 2 3

You can pass the flag --lock_view_dependence to remove view dependent effects. This can help mitigate distracting visual artifacts such as shifting eyebrows. However, locking view dependence may lower the visual quality of images (edges may be blurrier etc.)

Rendering Videos Interpolating between faces

python render_video_interpolation.py path/to/generator.pth --curriculum CelebA --seeds 0 1 2 3

Extracting 3D Shapes

python3 shape_extraction.py path/to/generator.pth --curriculum CelebA --seed 0

Pretrained Models

We provide pretrained models for CelebA, Cats, and CARLA.

CelebA: https://drive.google.com/file/d/1bRB4-KxQplJryJvqyEa8Ixkf_BVm4Nn6/view?usp=sharing

Cats: https://drive.google.com/file/d/1WBA-WI8DA7FqXn7__0TdBO0eO08C_EhG/view?usp=sharing

CARLA: https://drive.google.com/file/d/1n4eXijbSD48oJVAbAV4hgdcTbT3Yv4xO/view?usp=sharing

All zipped model files contain a generator.pth, ema.pth, and ema2.pth files. ema.pth used a decay of 0.999 and ema2.pth used a decay of 0.9999. All evaluation scripts will by default load the EMA from the file named ema.pth in the same directory as the generator.pth file.

Training Tips

If you have the resources, increasing the number of samples (steps) per ray will dramatically increase the quality of your 3D shapes. If you're looking for good shapes, e.g. for CelebA, try increasing num_steps and moving the back plane (ray_end) to allow the model to move the background back and capture the full head.

Training has been tested to work well on either two RTX 6000's or one RTX 8000. Training with smaller GPU's and batch sizes generally works fine, but it's also possible you'll encounter instability, especially at higher resolutions. Bubbles and artifacts that suddenly appear, or blurring in the tilted angles, are signs that training destabilized. This can usually be mitigated by training with a larger batch size or by reducing the learning rate.

Since the original implementation we added a pose identity component to the loss. Controlled by pos_lambda in the curriculum, the pose idedntity component helps ensure generated scenes share the same canonical pose. Empirically, it seems to improve 3D models, but may introduce a minor decrease in image quality scores.

Citation

If you find our work useful in your research, please cite:

@inproceedings{piGAN2021,
  title={pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis},
  author={Eric Chan and Marco Monteiro and Petr Kellnhofer and Jiajun Wu and Gordon Wetzstein},
  year={2021},
  booktitle={Proc. CVPR},
}
Hyper-parameter optimization for sklearn

hyperopt-sklearn Hyperopt-sklearn is Hyperopt-based model selection among machine learning algorithms in scikit-learn. See how to use hyperopt-sklearn

1.4k Jan 01, 2023
This repository introduces a short project about Transfer Learning for Classification of MRI Images.

Transfer Learning for MRI Images Classification This repository introduces a short project made during my stay at Neuromatch Summer School 2021. This

Oscar Guarnizo 3 Nov 15, 2022
Pytorch implementation of SimSiam Architecture

SimSiam-pytorch A simple pytorch implementation of Exploring Simple Siamese Representation Learning which is developed by Facebook AI Research (FAIR)

Saeed Shurrab 1 Oct 20, 2021
This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University.

bayesian_uncertainty This is my research project for the Irving Center for Cancer Dynamics/Azizi Lab, Columbia University. In this project I build a s

Max David Gupta 1 Feb 13, 2022
Train DeepLab for Semantic Image Segmentation

Train DeepLab for Semantic Image Segmentation Martin Kersner, [email protected]

Martin Kersner 172 Dec 14, 2022
Deep Learning for Time Series Forecasting.

nixtlats:Deep Learning for Time Series Forecasting [nikstla] (noun, nahuatl) Period of time. State-of-the-art time series forecasting for pytorch. Nix

Nixtla 5 Dec 06, 2022
RIM: Reliable Influence-based Active Learning on Graphs.

RIM: Reliable Influence-based Active Learning on Graphs. This repository is the official implementation of RIM. Requirements To install requirements:

Wentao Zhang 4 Aug 29, 2022
Resources for the Ki testnet challenge

Ki Testnet Challenge This repository hosts ki-testnet-challenge. A set of scripts and resources to be used for the Ki Testnet Challenge What is the te

Ki Foundation 23 Aug 08, 2022
Motion planning algorithms commonly used on autonomous vehicles. (path planning + path tracking)

Overview This repository implemented some common motion planners used on autonomous vehicles, including Hybrid A* Planner Frenet Optimal Trajectory Hi

Huiming Zhou 1k Jan 09, 2023
Single-stage Keypoint-based Category-level Object Pose Estimation from an RGB Image

CenterPose Overview This repository is the official implementation of the paper "Single-stage Keypoint-based Category-level Object Pose Estimation fro

NVIDIA Research Projects 188 Dec 27, 2022
(NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductive few-shot classification"

SSR (NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductivefew-shot classification" [Paper] [Project webpage]

xshen 29 Dec 06, 2022
Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images

SASSnet Code for paper: Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images(MICCAI 2020) Our code is origin from UA-MT You can fin

klein 125 Jan 03, 2023
A simplified framework and utilities for PyTorch

Here is Poutyne. Poutyne is a simplified framework for PyTorch and handles much of the boilerplating code needed to train neural networks. Use Poutyne

GRAAL/GRAIL 534 Dec 17, 2022
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

ObjProp Introduction This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Insta

Anirudh S Chakravarthy 6 May 03, 2022
PaddleRobotics is an open-source algorithm library for robots based on Paddle, including open-source parts such as human-robot interaction, complex motion control, environment perception, SLAM positioning, and navigation.

简体中文 | English PaddleRobotics paddleRobotics是基于paddle的机器人开源算法库集,包括人机交互、复杂运动控制、环境感知、slam定位导航等开源算法部分。 人机交互 主动多模交互技术TFVT-HRI 主动多模交互技术是通过视觉、语音、触摸传感器等输入机器人

185 Dec 26, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang News 2021.12.5 Release Deep

145 Jan 05, 2023
Reinforcement Learning for the Blackjack

Reinforcement Learning for Blackjack Author: ZHA Mengyue Math Department of HKUST Problem Statement We study playing Blackjack by reinforcement learni

Dolores 3 Jan 24, 2022
Interpretation of T cell states using reference single-cell atlases

Interpretation of T cell states using reference single-cell atlases ProjecTILs is a computational method to project scRNA-seq data into reference sing

Cancer Systems Immunology Lab 139 Jan 03, 2023
Contains code for the paper "Vision Transformers are Robust Learners".

Vision Transformers are Robust Learners This repository contains the code for the paper Vision Transformers are Robust Learners by Sayak Paul* and Pin

Sayak Paul 103 Jan 05, 2023
Multi-Glimpse Network With Python

Multi-Glimpse Network Multi-Glimpse Network: A Robust and Efficient Classification Architecture based on Recurrent Downsampled Attention arXiv Require

9 May 10, 2022