π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis

Related tags

Deep Learningpi-GAN
Overview

π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis

Project Page | Paper | Data

Eric Ryan Chan*, Marco Monteiro*, Petr Kellnhofer, Jiajun Wu, Gordon Wetzstein
*denotes equal contribution

This is the official implementation of the paper "π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis".

π-GAN is a novel generative model for high-quality 3D aware image synthesis.

results2.mp4

Training a Model

The main training script can be found in train.py. Majority of hyperparameters for training and evaluation are set in the curriculums.py file. (see file for more details) We provide recommended curriculums for CelebA, Cats, and CARLA.

Relevant Flags:

Set the output directory: --output_dir=[output directory]

Set the model loading directory: --load_dir=[load directory]

Set the current training curriculum: --curriculum=[curriculum]

Set the port for distributed training: --port=[port]

To start training:

On one GPU for CelebA: CUDA_VISIBLE_DEVICES=0 python3 train.py --curriculum CelebA --output_dir celebAOutputDir

On multiple GPUs, simply list cuda visible devices in a comma-separated list: CUDA_VISIBLE_DEVICES=1,3 python3 train.py --curriculum CelebA --output_dir celebAOutputDir

To continue training from another run specify the --load_dir=path/to/directory flag.

Model Results and Evaluation

Evaluation Metrics

To generate real images for evaluation run python fid_evaluation --dataset CelebA --img_size 128 --num_imgs 8000. To calculate fid/kid/inception scores run python eval_metrics.py path/to/generator.pth --real_image_dir path/to/real_images/directory --curriculum CelebA --num_images 8000.

Rendering Images

python render_multiview_images.py path/to/generator.pth --curriculum CelebA --seeds 0 1 2 3

For best visual results, load the EMA parameters, use truncation, increase the resolution (e.g. to 512 x 512) and increase the number of depth samples (e.g. to 24 or 36).

Rendering Videos

python render_video.py path/to/generator.pth --curriculum CelebA --seeds 0 1 2 3

You can pass the flag --lock_view_dependence to remove view dependent effects. This can help mitigate distracting visual artifacts such as shifting eyebrows. However, locking view dependence may lower the visual quality of images (edges may be blurrier etc.)

Rendering Videos Interpolating between faces

python render_video_interpolation.py path/to/generator.pth --curriculum CelebA --seeds 0 1 2 3

Extracting 3D Shapes

python3 shape_extraction.py path/to/generator.pth --curriculum CelebA --seed 0

Pretrained Models

We provide pretrained models for CelebA, Cats, and CARLA.

CelebA: https://drive.google.com/file/d/1bRB4-KxQplJryJvqyEa8Ixkf_BVm4Nn6/view?usp=sharing

Cats: https://drive.google.com/file/d/1WBA-WI8DA7FqXn7__0TdBO0eO08C_EhG/view?usp=sharing

CARLA: https://drive.google.com/file/d/1n4eXijbSD48oJVAbAV4hgdcTbT3Yv4xO/view?usp=sharing

All zipped model files contain a generator.pth, ema.pth, and ema2.pth files. ema.pth used a decay of 0.999 and ema2.pth used a decay of 0.9999. All evaluation scripts will by default load the EMA from the file named ema.pth in the same directory as the generator.pth file.

Training Tips

If you have the resources, increasing the number of samples (steps) per ray will dramatically increase the quality of your 3D shapes. If you're looking for good shapes, e.g. for CelebA, try increasing num_steps and moving the back plane (ray_end) to allow the model to move the background back and capture the full head.

Training has been tested to work well on either two RTX 6000's or one RTX 8000. Training with smaller GPU's and batch sizes generally works fine, but it's also possible you'll encounter instability, especially at higher resolutions. Bubbles and artifacts that suddenly appear, or blurring in the tilted angles, are signs that training destabilized. This can usually be mitigated by training with a larger batch size or by reducing the learning rate.

Since the original implementation we added a pose identity component to the loss. Controlled by pos_lambda in the curriculum, the pose idedntity component helps ensure generated scenes share the same canonical pose. Empirically, it seems to improve 3D models, but may introduce a minor decrease in image quality scores.

Citation

If you find our work useful in your research, please cite:

@inproceedings{piGAN2021,
  title={pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis},
  author={Eric Chan and Marco Monteiro and Petr Kellnhofer and Jiajun Wu and Gordon Wetzstein},
  year={2021},
  booktitle={Proc. CVPR},
}
Code for NeurIPS 2021 paper: Invariant Causal Imitation Learning for Generalizable Policies

Invariant Causal Imitation Learning for Generalizable Policies Ioana Bica, Daniel Jarrett, Mihaela van der Schaar Neural Information Processing System

Ioana Bica 17 Dec 01, 2022
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting (RVM) English | 中文 Official repository for the paper Robust High-Resolution Video Matting with Temporal Guidance. RVM is specific

flow-dev 2 Aug 21, 2022
[CVPR 2021] MiVOS - Mask Propagation module. Reproduced STM (and better) with training code :star2:. Semi-supervised video object segmentation evaluation.

MiVOS (CVPR 2021) - Mask Propagation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] [Papers with Code] This repo impleme

Rex Cheng 106 Jan 03, 2023
This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022).

MoEBERT This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022). Installation Create an

Simiao Zuo 34 Dec 24, 2022
Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation

Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation (CVPR2019) This is a pytorch implementatio

Yawei Luo 280 Jan 01, 2023
Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition

Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition Official implementation of the Efficient Conforme

Maxime Burchi 145 Dec 30, 2022
Paper: De-rendering Stylized Texts

Paper: De-rendering Stylized Texts Wataru Shimoda1, Daichi Haraguchi2, Seiichi Uchida2, Kota Yamaguchi1 1CyberAgent.Inc, 2 Kyushu University Accepted

CyberAgent AI Lab 55 Dec 18, 2022
Build fully-functioning computer vision models with PyTorch

Detecto is a Python package that allows you to build fully-functioning computer vision and object detection models with just 5 lines of code. Inferenc

Alan Bi 576 Dec 29, 2022
Dynamica causal Bayesian optimisation

Dynamic Causal Bayesian Optimization This is a Python implementation of Dynamic Causal Bayesian Optimization as presented at NeurIPS 2021. Abstract Th

nd308 18 Nov 22, 2022
A simple program for training and testing vit

Vit This is a simple program for training and testing vit. Key requirements: torch, torchvision and timm. Dataset I put 5 categories of the cub classi

xiezhenyu 2 Oct 11, 2022
Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation

SSWS-loss_function_based_on_MS-TCN Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation Supervised Sliding Window

3 Aug 03, 2022
Streamlit tool to explore coco datasets

What is this This tool given a COCO annotations file and COCO predictions file will let you explore your dataset, visualize results and calculate impo

Jakub Cieslik 75 Dec 16, 2022
Predicting 10 different clothing types using Xception pre-trained model.

Predicting-Clothing-Types Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from

AbdAssalam Ahmad 3 Dec 29, 2021
Towards Debiasing NLU Models from Unknown Biases

Towards Debiasing NLU Models from Unknown Biases Abstract: NLU models often exploit biased features to achieve high dataset-specific performance witho

Ubiquitous Knowledge Processing Lab 22 Jun 14, 2022
Reinforcement Learning with Q-Learning Algorithm on gym's frozen lake environment implemented in python

Reinforcement Learning with Q Learning Algorithm Q learning algorithm is trained on the gym's frozen lake environment. Libraries Used gym Numpy tqdm P

1 Nov 10, 2021
Expert Finding in Legal Community Question Answering

Expert Finding in Legal Community Question Answering Arian Askari, Suzan Verberne, and Gabriella Pasi. Expert Finding in Legal Community Question Answ

Arian Askari 3 Oct 31, 2022
Galileo library for large scale graph training by JD

近年来,图计算在搜索、推荐和风控等场景中获得显著的效果,但也面临超大规模异构图训练,与现有的深度学习框架Tensorflow和PyTorch结合等难题。 Galileo(伽利略)是一个图深度学习框架,具备超大规模、易使用、易扩展、高性能、双后端等优点,旨在解决超大规模图算法在工业级场景的落地难题,提

JD Galileo Team 128 Nov 29, 2022
Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis

TDY-CNN for Text-Independent Speaker Verification Official implementation of Temporal Dynamic Convolutional Neural Network for Text-Independent Speake

Seong-Hu Kim 16 Oct 17, 2022
Face Mask Detector by live camera using tensorflow-keras, openCV and Python

Face Mask Detector 😷 by Live Camera Detecting masked or unmasked faces by live camera with percentange of mask occupation About Project: This an Arti

Karan Shingde 2 Apr 04, 2022