Hyper-parameter optimization for sklearn

Overview

hyperopt-sklearn

Hyperopt-sklearn is Hyperopt-based model selection among machine learning algorithms in scikit-learn.

See how to use hyperopt-sklearn through examples or older notebooks

More examples can be found in the Example Usage section of the SciPy paper

Komer B., Bergstra J., and Eliasmith C. "Hyperopt-Sklearn: automatic hyperparameter configuration for Scikit-learn" Proc. SciPy 2014. http://conference.scipy.org/proceedings/scipy2014/pdfs/komer.pdf

Installation

Installation from a git clone using pip is supported:

git clone [email protected]:hyperopt/hyperopt-sklearn.git
(cd hyperopt-sklearn && pip install -e .)

Usage

If you are familiar with sklearn, adding the hyperparameter search with hyperopt-sklearn is only a one line change from the standard pipeline.

from hpsklearn import HyperoptEstimator, svc
from sklearn import svm

# Load Data
# ...

if use_hpsklearn:
    estim = HyperoptEstimator(classifier=svc('mySVC'))
else:
    estim = svm.SVC()

estim.fit(X_train, y_train)

print(estim.score(X_test, y_test))
# <<show score here>>

Each component comes with a default search space. The search space for each parameter can be changed or set constant by passing in keyword arguments. In the following example the penalty parameter is held constant during the search, and the loss and alpha parameters have their search space modified from the default.

from hpsklearn import HyperoptEstimator, sgd
from hyperopt import hp
import numpy as np

sgd_penalty = 'l2'
sgd_loss = hp.pchoice(’loss’, [(0.50, ’hinge’), (0.25, ’log’), (0.25, ’huber’)])
sgd_alpha = hp.loguniform(’alpha’, low=np.log(1e-5), high=np.log(1))

estim = HyperoptEstimator(classifier=sgd(’my_sgd’, penalty=sgd_penalty, loss=sgd_loss, alpha=sgd_alpha))
estim.fit(X_train, y_train)

Complete example using the Iris dataset:

from hpsklearn import HyperoptEstimator, any_classifier, any_preprocessing
from sklearn.datasets import load_iris
from hyperopt import tpe
import numpy as np

# Download the data and split into training and test sets

iris = load_iris()

X = iris.data
y = iris.target

test_size = int(0.2 * len(y))
np.random.seed(13)
indices = np.random.permutation(len(X))
X_train = X[indices[:-test_size]]
y_train = y[indices[:-test_size]]
X_test = X[indices[-test_size:]]
y_test = y[indices[-test_size:]]

# Instantiate a HyperoptEstimator with the search space and number of evaluations

estim = HyperoptEstimator(classifier=any_classifier('my_clf'),
                          preprocessing=any_preprocessing('my_pre'),
                          algo=tpe.suggest,
                          max_evals=100,
                          trial_timeout=120)

# Search the hyperparameter space based on the data

estim.fit(X_train, y_train)

# Show the results

print(estim.score(X_test, y_test))
# 1.0

print(estim.best_model())
# {'learner': ExtraTreesClassifier(bootstrap=False, class_weight=None, criterion='gini',
#           max_depth=3, max_features='log2', max_leaf_nodes=None,
#           min_impurity_decrease=0.0, min_impurity_split=None,
#           min_samples_leaf=1, min_samples_split=2,
#           min_weight_fraction_leaf=0.0, n_estimators=13, n_jobs=1,
#           oob_score=False, random_state=1, verbose=False,
#           warm_start=False), 'preprocs': (), 'ex_preprocs': ()}

Here's an example using MNIST and being more specific on the classifier and preprocessing.

from hpsklearn import HyperoptEstimator, extra_trees
from sklearn.datasets import fetch_mldata
from hyperopt import tpe
import numpy as np

# Download the data and split into training and test sets

digits = fetch_mldata('MNIST original')

X = digits.data
y = digits.target

test_size = int(0.2 * len(y))
np.random.seed(13)
indices = np.random.permutation(len(X))
X_train = X[indices[:-test_size]]
y_train = y[indices[:-test_size]]
X_test = X[indices[-test_size:]]
y_test = y[indices[-test_size:]]

# Instantiate a HyperoptEstimator with the search space and number of evaluations

estim = HyperoptEstimator(classifier=extra_trees('my_clf'),
                          preprocessing=[],
                          algo=tpe.suggest,
                          max_evals=10,
                          trial_timeout=300)

# Search the hyperparameter space based on the data

estim.fit( X_train, y_train )

# Show the results

print(estim.score(X_test, y_test))
# 0.962785714286 

print(estim.best_model())
# {'learner': ExtraTreesClassifier(bootstrap=True, class_weight=None, criterion='entropy',
#           max_depth=None, max_features=0.959202875857,
#           max_leaf_nodes=None, min_impurity_decrease=0.0,
#           min_impurity_split=None, min_samples_leaf=1,
#           min_samples_split=2, min_weight_fraction_leaf=0.0,
#           n_estimators=20, n_jobs=1, oob_score=False, random_state=3,
#           verbose=False, warm_start=False), 'preprocs': (), 'ex_preprocs': ()}

Available Components

Not all of the classifiers/regressors/preprocessing from sklearn have been implemented yet. A list of those currently available is shown below. If there is something you would like that is not on the list, feel free to make an issue or a pull request! The source code for implementing these functions is found here

Classifiers

svc
svc_linear
svc_rbf
svc_poly
svc_sigmoid
liblinear_svc

knn

ada_boost
gradient_boosting

random_forest
extra_trees
decision_tree

sgd

xgboost_classification

multinomial_nb
gaussian_nb

passive_aggressive

linear_discriminant_analysis
quadratic_discriminant_analysis

one_vs_rest
one_vs_one
output_code

For a simple generic search space across many classifiers, use any_classifier. If your data is in a sparse matrix format, use any_sparse_classifier.

Regressors

svr
svr_linear
svr_rbf
svr_poly
svr_sigmoid

knn_regression

ada_boost_regression
gradient_boosting_regression

random_forest_regression
extra_trees_regression

sgd_regression

xgboost_regression

For a simple generic search space across many regressors, use any_regressor. If your data is in a sparse matrix format, use any_sparse_regressor.

Preprocessing

pca

one_hot_encoder

standard_scaler
min_max_scaler
normalizer

ts_lagselector

tfidf

rbm

colkmeans

For a simple generic search space across many preprocessing algorithms, use any_preprocessing. If you are working with raw text data, use any_text_preprocessing. Currently only TFIDF is used for text, but more may be added in the future. Note that the preprocessing parameter in HyperoptEstimator is expecting a list, since various preprocessing steps can be chained together. The generic search space functions any_preprocessing and any_text_preprocessing already return a list, but the others do not so they should be wrapped in a list. If you do not want to do any preprocessing, pass in an empty list [].

Repository for code and dataset for our EMNLP 2021 paper - “So You Think You’re Funny?”: Rating the Humour Quotient in Standup Comedy.

AI-OpenMic Dataset The dataset is available for download via the follwing link. Repository for code and dataset for our EMNLP 2021 paper - “So You Thi

6 Oct 26, 2022
Repository for RNNs using TensorFlow and Keras - LSTM and GRU Implementation from Scratch - Simple Classification and Regression Problem using RNNs

RNN 01- RNN_Classification Simple RNN training for classification task of 3 signal: Sine, Square, Triangle. 02- RNN_Regression Simple RNN training for

Nahid Ebrahimian 13 Dec 13, 2022
Code release for "Self-Tuning for Data-Efficient Deep Learning" (ICML 2021)

Self-Tuning for Data-Efficient Deep Learning This repository contains the implementation code for paper: Self-Tuning for Data-Efficient Deep Learning

THUML @ Tsinghua University 101 Dec 11, 2022
The repo of the preprinting paper "Labels Are Not Perfect: Inferring Spatial Uncertainty in Object Detection"

Inferring Spatial Uncertainty in Object Detection A teaser version of the code for the paper Labels Are Not Perfect: Inferring Spatial Uncertainty in

ZINING WANG 21 Mar 03, 2022
UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring

UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring Code Summary aggregate.py: this script aggr

1 Dec 28, 2021
Simulation code and tutorial for BBHnet training data

Simulation Dataset for BBHnet NOTE: OLD README, UPDATE IN PROGRESS We generate simulation dataset to train BBHnet, our deep learning framework for det

0 May 31, 2022
Deploy recommendation engines with Edge Computing

RecoEdge: Bringing Recommendations to the Edge A one stop solution to build your recommendation models, train them and, deploy them in a privacy prese

NimbleEdge 131 Jan 02, 2023
NeurIPS-2021: Neural Auto-Curricula in Two-Player Zero-Sum Games.

NAC Official PyTorch implementation of NAC from the paper: Neural Auto-Curricula in Two-Player Zero-Sum Games. We release code for: Gradient based ora

Xidong Feng 19 Nov 11, 2022
Harmonic Memory Networks for Graph Completion

HMemNetworks Code and documentation for Harmonic Memory Networks, a series of models for compositionally assembling representations of graph elements

mlalisse 0 Oct 27, 2021
Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network

Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network This repository is the official implementation of Speech Separati

Kai Li (李凯) 116 Nov 09, 2022
Learning Representations that Support Robust Transfer of Predictors

Transfer Risk Minimization (TRM) Code for Learning Representations that Support Robust Transfer of Predictors Prepare the Datasets Preprocess the Scen

Yilun Xu 15 Dec 07, 2022
A lightweight deep network for fast and accurate optical flow estimation.

FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation The official PyTorch implementation of FastFlowNet (ICRA 2021). Authors: Lingtong

Tone 161 Jan 03, 2023
Data Engineering ZoomCamp

Data Engineering ZoomCamp I'm partaking in a Data Engineering Bootcamp / Zoomcamp and will be tracking my progress here. I can't promise these notes w

Aaron 61 Jan 06, 2023
NeuPy is a Tensorflow based python library for prototyping and building neural networks

NeuPy v0.8.2 NeuPy is a python library for prototyping and building neural networks. NeuPy uses Tensorflow as a computational backend for deep learnin

Yurii Shevchuk 729 Jan 03, 2023
Research on Tabular Deep Learning (Python package & papers)

Research on Tabular Deep Learning For paper implementations, see the section "Papers and projects". rtdl is a PyTorch-based package providing a user-f

Yura Gorishniy 510 Dec 30, 2022
Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation

UTNet (Accepted at MICCAI 2021) Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation Introduction Transf

110 Jan 01, 2023
Multi-Horizon-Forecasting-for-Limit-Order-Books

Multi-Horizon-Forecasting-for-Limit-Order-Books This jupyter notebook is used to demonstrate our work, Multi-Horizon Forecasting for Limit Order Books

Zihao Zhang 116 Dec 23, 2022
Code release for General Greedy De-bias Learning

General Greedy De-bias for Dataset Biases This is an extention of "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). T

4 Mar 15, 2022
Official PyTorch implementation of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image", ICCV 2019

PoseNet of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image" Introduction This repo is official Py

Gyeongsik Moon 677 Dec 25, 2022
Comp445 project - Data Communications & Computer Networks

COMP-445 Data Communications & Computer Networks Change Python version in Conda

Peng Zhao 2 Oct 03, 2022