Hyper-parameter optimization for sklearn

Overview

hyperopt-sklearn

Hyperopt-sklearn is Hyperopt-based model selection among machine learning algorithms in scikit-learn.

See how to use hyperopt-sklearn through examples or older notebooks

More examples can be found in the Example Usage section of the SciPy paper

Komer B., Bergstra J., and Eliasmith C. "Hyperopt-Sklearn: automatic hyperparameter configuration for Scikit-learn" Proc. SciPy 2014. http://conference.scipy.org/proceedings/scipy2014/pdfs/komer.pdf

Installation

Installation from a git clone using pip is supported:

git clone [email protected]:hyperopt/hyperopt-sklearn.git
(cd hyperopt-sklearn && pip install -e .)

Usage

If you are familiar with sklearn, adding the hyperparameter search with hyperopt-sklearn is only a one line change from the standard pipeline.

from hpsklearn import HyperoptEstimator, svc
from sklearn import svm

# Load Data
# ...

if use_hpsklearn:
    estim = HyperoptEstimator(classifier=svc('mySVC'))
else:
    estim = svm.SVC()

estim.fit(X_train, y_train)

print(estim.score(X_test, y_test))
# <<show score here>>

Each component comes with a default search space. The search space for each parameter can be changed or set constant by passing in keyword arguments. In the following example the penalty parameter is held constant during the search, and the loss and alpha parameters have their search space modified from the default.

from hpsklearn import HyperoptEstimator, sgd
from hyperopt import hp
import numpy as np

sgd_penalty = 'l2'
sgd_loss = hp.pchoice(’loss’, [(0.50, ’hinge’), (0.25, ’log’), (0.25, ’huber’)])
sgd_alpha = hp.loguniform(’alpha’, low=np.log(1e-5), high=np.log(1))

estim = HyperoptEstimator(classifier=sgd(’my_sgd’, penalty=sgd_penalty, loss=sgd_loss, alpha=sgd_alpha))
estim.fit(X_train, y_train)

Complete example using the Iris dataset:

from hpsklearn import HyperoptEstimator, any_classifier, any_preprocessing
from sklearn.datasets import load_iris
from hyperopt import tpe
import numpy as np

# Download the data and split into training and test sets

iris = load_iris()

X = iris.data
y = iris.target

test_size = int(0.2 * len(y))
np.random.seed(13)
indices = np.random.permutation(len(X))
X_train = X[indices[:-test_size]]
y_train = y[indices[:-test_size]]
X_test = X[indices[-test_size:]]
y_test = y[indices[-test_size:]]

# Instantiate a HyperoptEstimator with the search space and number of evaluations

estim = HyperoptEstimator(classifier=any_classifier('my_clf'),
                          preprocessing=any_preprocessing('my_pre'),
                          algo=tpe.suggest,
                          max_evals=100,
                          trial_timeout=120)

# Search the hyperparameter space based on the data

estim.fit(X_train, y_train)

# Show the results

print(estim.score(X_test, y_test))
# 1.0

print(estim.best_model())
# {'learner': ExtraTreesClassifier(bootstrap=False, class_weight=None, criterion='gini',
#           max_depth=3, max_features='log2', max_leaf_nodes=None,
#           min_impurity_decrease=0.0, min_impurity_split=None,
#           min_samples_leaf=1, min_samples_split=2,
#           min_weight_fraction_leaf=0.0, n_estimators=13, n_jobs=1,
#           oob_score=False, random_state=1, verbose=False,
#           warm_start=False), 'preprocs': (), 'ex_preprocs': ()}

Here's an example using MNIST and being more specific on the classifier and preprocessing.

from hpsklearn import HyperoptEstimator, extra_trees
from sklearn.datasets import fetch_mldata
from hyperopt import tpe
import numpy as np

# Download the data and split into training and test sets

digits = fetch_mldata('MNIST original')

X = digits.data
y = digits.target

test_size = int(0.2 * len(y))
np.random.seed(13)
indices = np.random.permutation(len(X))
X_train = X[indices[:-test_size]]
y_train = y[indices[:-test_size]]
X_test = X[indices[-test_size:]]
y_test = y[indices[-test_size:]]

# Instantiate a HyperoptEstimator with the search space and number of evaluations

estim = HyperoptEstimator(classifier=extra_trees('my_clf'),
                          preprocessing=[],
                          algo=tpe.suggest,
                          max_evals=10,
                          trial_timeout=300)

# Search the hyperparameter space based on the data

estim.fit( X_train, y_train )

# Show the results

print(estim.score(X_test, y_test))
# 0.962785714286 

print(estim.best_model())
# {'learner': ExtraTreesClassifier(bootstrap=True, class_weight=None, criterion='entropy',
#           max_depth=None, max_features=0.959202875857,
#           max_leaf_nodes=None, min_impurity_decrease=0.0,
#           min_impurity_split=None, min_samples_leaf=1,
#           min_samples_split=2, min_weight_fraction_leaf=0.0,
#           n_estimators=20, n_jobs=1, oob_score=False, random_state=3,
#           verbose=False, warm_start=False), 'preprocs': (), 'ex_preprocs': ()}

Available Components

Not all of the classifiers/regressors/preprocessing from sklearn have been implemented yet. A list of those currently available is shown below. If there is something you would like that is not on the list, feel free to make an issue or a pull request! The source code for implementing these functions is found here

Classifiers

svc
svc_linear
svc_rbf
svc_poly
svc_sigmoid
liblinear_svc

knn

ada_boost
gradient_boosting

random_forest
extra_trees
decision_tree

sgd

xgboost_classification

multinomial_nb
gaussian_nb

passive_aggressive

linear_discriminant_analysis
quadratic_discriminant_analysis

one_vs_rest
one_vs_one
output_code

For a simple generic search space across many classifiers, use any_classifier. If your data is in a sparse matrix format, use any_sparse_classifier.

Regressors

svr
svr_linear
svr_rbf
svr_poly
svr_sigmoid

knn_regression

ada_boost_regression
gradient_boosting_regression

random_forest_regression
extra_trees_regression

sgd_regression

xgboost_regression

For a simple generic search space across many regressors, use any_regressor. If your data is in a sparse matrix format, use any_sparse_regressor.

Preprocessing

pca

one_hot_encoder

standard_scaler
min_max_scaler
normalizer

ts_lagselector

tfidf

rbm

colkmeans

For a simple generic search space across many preprocessing algorithms, use any_preprocessing. If you are working with raw text data, use any_text_preprocessing. Currently only TFIDF is used for text, but more may be added in the future. Note that the preprocessing parameter in HyperoptEstimator is expecting a list, since various preprocessing steps can be chained together. The generic search space functions any_preprocessing and any_text_preprocessing already return a list, but the others do not so they should be wrapped in a list. If you do not want to do any preprocessing, pass in an empty list [].

Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous Event-Based Data"

A Differentiable Recurrent Surface for Asynchronous Event-Based Data Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous

Marco Cannici 21 Oct 05, 2022
Text to image synthesis using thought vectors

Text To Image Synthesis Using Thought Vectors This is an experimental tensorflow implementation of synthesizing images from captions using Skip Though

Paarth Neekhara 2.1k Jan 05, 2023
Commonsense Ability Tests

CATS Commonsense Ability Tests Dataset and script for paper Evaluating Commonsense in Pre-trained Language Models Use making_sense.py to run the exper

XUHUI ZHOU 28 Oct 19, 2022
Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification"

Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification" This is an end-to-end framework for accurate and robust left ventr

2 Jul 09, 2022
A simple API wrapper for Discord interactions.

Your ultimate Discord interactions library for discord.py. About | Installation | Examples | Discord | PyPI About What is discord-py-interactions? dis

james 641 Jan 03, 2023
Proximal Backpropagation - a neural network training algorithm that takes implicit instead of explicit gradient steps

Proximal Backpropagation Proximal Backpropagation (ProxProp) is a neural network training algorithm that takes implicit instead of explicit gradient s

Thomas Frerix 40 Dec 17, 2022
[CVPR 2019 Oral] Multi-Channel Attention Selection GAN with Cascaded Semantic Guidance for Cross-View Image Translation

SelectionGAN for Guided Image-to-Image Translation CVPR Paper | Extended Paper | Guided-I2I-Translation-Papers Citation If you use this code for your

Hao Tang 424 Dec 02, 2022
This is an implementation of PIFuhd based on Pytorch

Open-PIFuhd This is a unofficial implementation of PIFuhd PIFuHD: Multi-Level Pixel-Aligned Implicit Function forHigh-Resolution 3D Human Digitization

Lingteng Qiu 235 Dec 19, 2022
PyTorch implementation of Trust Region Policy Optimization

PyTorch implementation of TRPO Try my implementation of PPO (aka newer better variant of TRPO), unless you need to you TRPO for some specific reasons.

Ilya Kostrikov 366 Nov 15, 2022
A few stylization coreML models that I've trained with CreateML

CoreML-StyleTransfer A few stylization coreML models that I've trained with CreateML You can open and use the .mlmodel files in the "models" folder in

Doron Adler 8 Aug 18, 2022
YOLOv3 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices

Ultralytics 9.3k Jan 07, 2023
Robustness via Cross-Domain Ensembles

Robustness via Cross-Domain Ensembles [ICCV 2021, Oral] This repository contains tools for training and evaluating: Pretrained models Demo code Traini

Visual Intelligence & Learning Lab, Swiss Federal Institute of Technology (EPFL) 27 Dec 23, 2022
A Python package to process & model ChEMBL data.

insilico: A Python package to process & model ChEMBL data. ChEMBL is a manually curated chemical database of bioactive molecules with drug-like proper

Steven Newton 0 Dec 09, 2021
Computational Pathology Toolbox developed by TIA Centre, University of Warwick.

TIA Toolbox Computational Pathology Toolbox developed at the TIA Centre Getting Started All Users This package is for those interested in digital path

Tissue Image Analytics (TIA) Centre 156 Jan 08, 2023
QICK: Quantum Instrumentation Control Kit

QICK: Quantum Instrumentation Control Kit The QICK is a kit of firmware and software to use the Xilinx RFSoC to control quantum systems. It consists o

81 Dec 15, 2022
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
An implementation of the BADGE batch active learning algorithm.

Batch Active learning by Diverse Gradient Embeddings (BADGE) An implementation of the BADGE batch active learning algorithm. Details are provided in o

125 Dec 24, 2022
How the Deep Q-learning method works and discuss the new ideas that makes the algorithm work

Deep Q-Learning Recommend papers The first step is to read and understand the method that you will implement. It was first introduced in a 2013 paper

1 Jan 25, 2022
LinkNet - This repository contains our Torch7 implementation of the network developed by us at e-Lab.

LinkNet This repository contains our Torch7 implementation of the network developed by us at e-Lab. You can go to our blogpost or read the article Lin

e-Lab 158 Nov 11, 2022
Projecting interval uncertainty through the discrete Fourier transform

Projecting interval uncertainty through the discrete Fourier transform This repo

1 Mar 02, 2022