A Python package to process & model ChEMBL data.

Overview

insilico: A Python package to process & model ChEMBL data.

PyPI version License: MIT

ChEMBL is a manually curated chemical database of bioactive molecules with drug-like properties. It is maintained by the European Bioinformatics Institute (EBI), of the European Molecular Biology Laboratory (EMBL) based in Hinxton, UK.

insilico helps drug researchers find promising compounds for drug discovery. It preprocesses ChEMBL molecular data and outputs Lapinski's descriptors and chemical fingerprints using popular bioinformatic libraries. Additionally, this package can be used to make a decision tree model that predicts drug efficacy.

About the package name

The term in silico is a neologism used to mean pharmacology hypothesis development & testing performed via computer (silicon), and is related to the more commonly known biological terms in vivo ("within the living") and in vitro ("within the glass".)

Installation

Installation via pip:

$ pip install insilico

Installation via cloned repository:

$ git clone https://github.com/konstanzer/insilico
$ cd insilico
$ python setup.py install

Python dependencies

For preprocessing, rdkit-pypi, padelpy, and chembl_webresource_client and for modeling, sklearn and seaborn

Basic Usage

insilico offers two functions: one to search the ChEMBL database and a second to output preprocessed ChEMBL data based on the molecular ID. Using the chemical fingerprint from this output, the Model class creates a decision tree and outputs residual plots and metrics.

The function process_target_data saves the chemical fingerprint and, optionally, molecular descriptor plots to a data folder if plots=True.

When declaring the model class, you may specify a test set size and a variance threshold, which sets the minimum variance allowed for each column. This optional step may eliminate hundreds of features unhelpful for modeling. When calling the decision_tree function, optionally specify max tree depth and cost-complexity alpha, hyperparameters to control overfitting. If save=True, the model is saved to the data folder.

from insilico import target_search, process_target_data, Model

# return search results for 'P. falciparum D6'
result = target_search('P. falciparum')

# returns a dataframe of molecular data for CHEMBL2367107 (P. falciparum D6)
df = process_target_data('CHEMBL2367107')

model = Model(test_size=0.2, var_threshold=0.15)

# returns a decision tree and metrics (R^2 and MAE) & saves residual plot
tree, metrics = model.decision_tree(df, max_depth=50, ccp_alpha=0.)

# returns split data for use in other models
X_train, X_test, y_train, y_test = model.split_data()

Advanced option: Use optional 'fp' parameter to specify fingerprinter

Valid fingerprinters are "PubchemFingerprinter" (default), "ExtendedFingerprinter", "EStateFingerprinter", "GraphOnlyFingerprinter", "MACCSFingerprinter", "SubstructureFingerprinter", "SubstructureFingerprintCount", "KlekotaRothFingerprinter", "KlekotaRothFingerprintCount", "AtomPairs2DFingerprinter", and "AtomPairs2DFingerprintCount".

df = process_target_data('CHEMBL2367107', plots=False, fp='SubstructureFingerprinter')

Contributing, Reporting Issues & Support

Make a pull request if you'd like to contribute to insilico. Contributions should include tests for new features added and documentation. File an issue to report problems with the software or feature requests. Include information such as error messages, your OS/environment and Python version.

Questions may be sent to Steven Newton ([email protected]).

References

Bioinformatics Project from Scratch: Drug Discovery by Chanin Nantasenamat

Owner
Steven Newton
"Nobody can do it all but everybody can do something." -Sylvia Earle, marine biologist (Mission-Blue.org)
Steven Newton
Official repository for "Intriguing Properties of Vision Transformers" (2021)

Intriguing Properties of Vision Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, & Ming-Hsuan Yang P

Muzammal Naseer 155 Dec 27, 2022
This repository contains part of the code used to make the images visible in the article "How does an AI Imagine the Universe?" published on Towards Data Science.

Generative Adversarial Network - Generating Universe This repository contains part of the code used to make the images visible in the article "How doe

Davide Coccomini 9 Dec 18, 2022
This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning

This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning It includes /bert, which is the original BERT repos

Mitchell Gordon 11 Nov 15, 2022
Img-process-manual - Utilize Python Numpy and Matplotlib to realize OpenCV baisc image processing function

Img-process-manual - Opencv Library basic graphic processing algorithm coding reproduction based on Numpy and Matplotlib library

Jack_Shaw 2 Dec 12, 2022
Wav2Vec for speech recognition, classification, and audio classification

Soxan در زبان پارسی به نام سخن This repository consists of models, scripts, and notebooks that help you to use all the benefits of Wav2Vec 2.0 in your

Mehrdad Farahani 140 Dec 15, 2022
A keras implementation of ENet (abandoned for the foreseeable future)

ENet-keras This is an implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, ported from ENet-training (lua-t

Pavlos 115 Nov 23, 2021
[SIGMETRICS 2022] One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search

One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search paper | website One Proxy Device Is Enough for Hardware-Aware Neural Architec

10 Dec 16, 2022
Repo for the ACMMM20 submission: "Personalized breath based biometric authentication with wearable multimodality".

personalized-breath Repo for the ACMMM20 submission: "Personalized breath based biometric authentication with wearable multimodality". Guideline To ex

Manh-Ha Bui 2 Nov 15, 2021
Automatic Video Captioning Evaluation Metric --- EMScore

Automatic Video Captioning Evaluation Metric --- EMScore Overview For an illustration, EMScore can be computed as: Installation modify the encode_text

Yaya Shi 17 Nov 28, 2022
A little Python application to auto tag your photos with the power of machine learning.

Tag Machine A little Python application to auto tag your photos with the power of machine learning. Report a bug or request a feature Table of Content

Florian Torres 14 Dec 21, 2022
Pytorch Implementation of Residual Vision Transformers(ResViT)

ResViT Official Pytorch Implementation of Residual Vision Transformers(ResViT) which is described in the following paper: Onat Dalmaz and Mahmut Yurt

ICON Lab 41 Dec 08, 2022
PyTorch Implementation of NCSOFT's FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis

FastPitchFormant - PyTorch Implementation PyTorch Implementation of FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis. Qu

Keon Lee 63 Jan 02, 2023
Class-Balanced Loss Based on Effective Number of Samples. CVPR 2019

Class-Balanced Loss Based on Effective Number of Samples Tensorflow code for the paper: Class-Balanced Loss Based on Effective Number of Samples Yin C

Yin Cui 546 Jan 08, 2023
A Simple and Versatile Framework for Object Detection and Instance Recognition

SimpleDet - A Simple and Versatile Framework for Object Detection and Instance Recognition Major Features FP16 training for memory saving and up to 2.

TuSimple 3k Dec 12, 2022
Proof of concept GnuCash Webinterface

Proof of Concept GnuCash Webinterface This may one day be a something truly great. Milestones [ ] Browse accounts and view transactions [ ] Record sim

Josh 14 Dec 28, 2022
💡 Type hints for Numpy

Type hints with dynamic checks for Numpy! (❒) Installation pip install nptyping (❒) Usage (❒) NDArray nptyping.NDArray lets you define the shape and

Ramon Hagenaars 377 Dec 28, 2022
A Python Package for Convex Regression and Frontier Estimation

pyStoNED pyStoNED is a Python package that provides functions for estimating multivariate convex regression, convex quantile regression, convex expect

Sheng Dai 17 Jan 08, 2023
Improving Factual Consistency of Abstractive Text Summarization

Improving Factual Consistency of Abstractive Text Summarization We provide the code for the papers: "Entity-level Factual Consistency of Abstractive T

61 Nov 27, 2022
PyTorch code for our paper "Attention in Attention Network for Image Super-Resolution"

Under construction... Attention in Attention Network for Image Super-Resolution (A2N) This repository is an PyTorch implementation of the paper "Atten

Haoyu Chen 71 Dec 30, 2022
Code for 2021 NeurIPS --- Towards Multi-Grained Explainability for Graph Neural Networks

ReFine: Multi-Grained Explainability for GNNs We are trying hard to update the code, but it may take a while to complete due to our tight schedule rec

Shirley (Ying-Xin) Wu 47 Dec 16, 2022