A Python package to process & model ChEMBL data.

Overview

insilico: A Python package to process & model ChEMBL data.

PyPI version License: MIT

ChEMBL is a manually curated chemical database of bioactive molecules with drug-like properties. It is maintained by the European Bioinformatics Institute (EBI), of the European Molecular Biology Laboratory (EMBL) based in Hinxton, UK.

insilico helps drug researchers find promising compounds for drug discovery. It preprocesses ChEMBL molecular data and outputs Lapinski's descriptors and chemical fingerprints using popular bioinformatic libraries. Additionally, this package can be used to make a decision tree model that predicts drug efficacy.

About the package name

The term in silico is a neologism used to mean pharmacology hypothesis development & testing performed via computer (silicon), and is related to the more commonly known biological terms in vivo ("within the living") and in vitro ("within the glass".)

Installation

Installation via pip:

$ pip install insilico

Installation via cloned repository:

$ git clone https://github.com/konstanzer/insilico
$ cd insilico
$ python setup.py install

Python dependencies

For preprocessing, rdkit-pypi, padelpy, and chembl_webresource_client and for modeling, sklearn and seaborn

Basic Usage

insilico offers two functions: one to search the ChEMBL database and a second to output preprocessed ChEMBL data based on the molecular ID. Using the chemical fingerprint from this output, the Model class creates a decision tree and outputs residual plots and metrics.

The function process_target_data saves the chemical fingerprint and, optionally, molecular descriptor plots to a data folder if plots=True.

When declaring the model class, you may specify a test set size and a variance threshold, which sets the minimum variance allowed for each column. This optional step may eliminate hundreds of features unhelpful for modeling. When calling the decision_tree function, optionally specify max tree depth and cost-complexity alpha, hyperparameters to control overfitting. If save=True, the model is saved to the data folder.

from insilico import target_search, process_target_data, Model

# return search results for 'P. falciparum D6'
result = target_search('P. falciparum')

# returns a dataframe of molecular data for CHEMBL2367107 (P. falciparum D6)
df = process_target_data('CHEMBL2367107')

model = Model(test_size=0.2, var_threshold=0.15)

# returns a decision tree and metrics (R^2 and MAE) & saves residual plot
tree, metrics = model.decision_tree(df, max_depth=50, ccp_alpha=0.)

# returns split data for use in other models
X_train, X_test, y_train, y_test = model.split_data()

Advanced option: Use optional 'fp' parameter to specify fingerprinter

Valid fingerprinters are "PubchemFingerprinter" (default), "ExtendedFingerprinter", "EStateFingerprinter", "GraphOnlyFingerprinter", "MACCSFingerprinter", "SubstructureFingerprinter", "SubstructureFingerprintCount", "KlekotaRothFingerprinter", "KlekotaRothFingerprintCount", "AtomPairs2DFingerprinter", and "AtomPairs2DFingerprintCount".

df = process_target_data('CHEMBL2367107', plots=False, fp='SubstructureFingerprinter')

Contributing, Reporting Issues & Support

Make a pull request if you'd like to contribute to insilico. Contributions should include tests for new features added and documentation. File an issue to report problems with the software or feature requests. Include information such as error messages, your OS/environment and Python version.

Questions may be sent to Steven Newton ([email protected]).

References

Bioinformatics Project from Scratch: Drug Discovery by Chanin Nantasenamat

Owner
Steven Newton
"Nobody can do it all but everybody can do something." -Sylvia Earle, marine biologist (Mission-Blue.org)
Steven Newton
Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting

Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting #Dataset The folder "Dataset" contains the dataset use in this work and m

0 Jan 08, 2022
NAACL2021 - COIL Contextualized Lexical Retriever

COIL Repo for our NAACL paper, COIL: Revisit Exact Lexical Match in Information Retrieval with Contextualized Inverted List. The code covers learning

Luyu Gao 108 Dec 31, 2022
Deep Sea Treasure Environment for Multi-Objective Optimization Research

DeepSeaTreasure Environment Installation In order to get started with this environment, you can install it using the following command: python3 -m pip

imec IDLab 6 Nov 14, 2022
Face Identity Disentanglement via Latent Space Mapping [SIGGRAPH ASIA 2020]

Face Identity Disentanglement via Latent Space Mapping Description Official Implementation of the paper Face Identity Disentanglement via Latent Space

150 Dec 07, 2022
Unofficial Implementation of RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019)

RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019) This repository contains python (3.5.2) implementation of

Doyup Lee 222 Dec 21, 2022
Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model

Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model About This repository contains the code to replicate the syn

Haruka Kiyohara 12 Dec 07, 2022
(CVPR 2022) Energy-based Latent Aligner for Incremental Learning

Energy-based Latent Aligner for Incremental Learning Accepted to CVPR 2022 We illustrate an Incremental Learning model trained on a continuum of tasks

Joseph K J 37 Jan 03, 2023
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

Adelaide Intelligent Machines (AIM) Group 7 Sep 12, 2022
FNet Implementation with TensorFlow & PyTorch

FNet Implementation with TensorFlow & PyTorch. TensorFlow & PyTorch implementation of the paper "FNet: Mixing Tokens with Fourier Transforms". Overvie

Abdelghani Belgaid 1 Feb 12, 2022
An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge.

Bottom-Up and Top-Down Attention for Visual Question Answering An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge. The

Hengyuan Hu 731 Jan 03, 2023
Multi-task yolov5 with detection and segmentation based on yolov5

YOLOv5DS Multi-task yolov5 with detection and segmentation based on yolov5(branch v6.0) decoupled head anchor free segmentation head README中文 Ablation

150 Dec 30, 2022
As a part of the HAKE project, includes the reproduced SOTA models and the corresponding HAKE-enhanced versions (CVPR2020).

HAKE-Action HAKE-Action (TensorFlow) is a project to open the SOTA action understanding studies based on our Human Activity Knowledge Engine. It inclu

Yong-Lu Li 94 Nov 18, 2022
Data manipulation and transformation for audio signal processing, powered by PyTorch

torchaudio: an audio library for PyTorch The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the

1.9k Dec 28, 2022
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
A trashy useless Latin programming language written in python.

Codigum! The first programming langage in latin! (please keep your eyes closed when if you read the source code) It is pretty useless though. Document

Bic 2 Oct 25, 2021
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
Study of human inductive biases in CNNs and Transformers.

Are Convolutional Neural Networks or Transformers more like human vision? This repository contains the code and fine-tuned models of popular Convoluti

Shikhar Tuli 39 Dec 08, 2022
Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-art fuzzing techniques

About Fuzzification Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-

gts3.org (<a href=[email protected])"> 55 Oct 25, 2022
UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation. Training python train.py --c

Rishikesh (ऋषिकेश) 55 Dec 26, 2022
TensorFlow implementation of the algorithm in the paper "Decoupled Low-light Image Enhancement"

Decoupled Low-light Image Enhancement Shijie Hao1,2*, Xu Han1,2, Yanrong Guo1,2 & Meng Wang1,2 1Key Laboratory of Knowledge Engineering with Big Data

17 Apr 25, 2022