Unofficial Implementation of RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019)

Overview

RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019)

This repository contains python (3.5.2) implementation of RobustSTL (paper) .

Decomposing complex time series into trend, seasonality, and remainder components is an important task to facilitate time series anomaly detection and forecasting.
RobustSTL extract trend using LAD loss with sparse regularization and non-local seasonal filtering.
Compared to previous approaches (such as traditional STL), RobustSTL has advantages on

  1. Ability to handle seasonality fluctuation and shift, and abrupt change in trend and reminder
  2. robustness of data with anomalies
  3. applicability on time series with long seasonality period.

Requirments & Run

First, install some required libraries using pip.

pip3 install -r requirments.txt
python3 main.py

Sample Results

We generate a synthetic sample (sample_generator.py) and decompose it into trend, seasonality, and remainder. In run_example.ipynb, I attach the example codes to use RobustSTL and the outputs.

Codes

  • main.py : run example code
  • RobustSTL.py: contains RobustSTL algorithm and each process.
  • utils.py: common utility functions
  • sample_generator.py: generation codes of synthetic sample.
  • l1.py : optimizer of l1 norm approximation (source: cvxopt)

Arugments of RobustSTL

  • input : input series
  • season_len : length of seasonal period
  • reg1 : first order regularization parameter for trend extraction
  • reg2 : second order regularization parameter for trend extraction
  • K : number of past season samples in seasonality extraction
  • H : number of neighborhood in seasonality extraction
  • dn1, dn2 : hyperparameter of bilateral filter in denoising step.
  • ds1, ds2 : hyperparameter of bilarteral filter in seasonality extraction step.

Shape of input sample

Basically, RobustSTL is for univariate time series sample.
However, this codes are available on multi-variate time series sample. (It apply the algorithm to each series, using multiprocessing) Each series have to have same time length.

  • Univariate Time Series: [Time] or [Time,1]
  • Multivariate Time Series: [N, Time] or [N, Time, 1]

Etc

The original paper has wrong notation in seasonality extraction.
The difference is log

Owner
Doyup Lee
Machine Learning Researcher
Doyup Lee
PyTorch implementation of DirectCLR from paper Understanding Dimensional Collapse in Contrastive Self-supervised Learning

DirectCLR DirectCLR is a simple contrastive learning model for visual representation learning. It does not require a trainable projector as SimCLR. It

Meta Research 49 Dec 21, 2022
Code for Recurrent Mask Refinement for Few-Shot Medical Image Segmentation (ICCV 2021).

Recurrent Mask Refinement for Few-Shot Medical Image Segmentation Steps Install any missing packages using pip or conda Preprocess each dataset using

XIE LAB @ UCI 39 Dec 08, 2022
BBB streaming without Xorg and Pulseaudio and Chromium and other nonsense (heavily WIP)

BBB Streamer NG? Makes a conference like this... ...streamable like this! I also recorded a small video showing the basic features: https://www.youtub

Lukas Schauer 60 Oct 21, 2022
The official implementation of VAENAR-TTS, a VAE based non-autoregressive TTS model.

VAENAR-TTS This repo contains code accompanying the paper "VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis". Sa

THUHCSI 138 Oct 28, 2022
Model search is a framework that implements AutoML algorithms for model architecture search at scale

Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers speed up their exploration process for finding the right model a

Google 3.2k Dec 31, 2022
High performance distributed framework for training deep learning recommendation models based on PyTorch.

High performance distributed framework for training deep learning recommendation models based on PyTorch.

340 Dec 30, 2022
Realtime Face Anti Spoofing with Face Detector based on Deep Learning using Tensorflow/Keras and OpenCV

Realtime Face Anti-Spoofing Detection 🤖 Realtime Face Anti Spoofing Detection with Face Detector to detect real and fake faces Please star this repo

Prem Kumar 86 Aug 03, 2022
This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras)

Yogi-Optimizer_Keras This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras) The NeurIPS-Paper can be found here: http://papers.nips.c

14 Sep 13, 2022
Additional environments compatible with OpenAI gym

Decentralized Control of Quadrotor Swarms with End-to-end Deep Reinforcement Learning A codebase for training reinforcement learning policies for quad

Zhehui Huang 40 Dec 06, 2022
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a-Service". Being busy recently, the code in this repo and this tutoria

Tianxiang Sun 149 Jan 04, 2023
MVP Benchmark for Multi-View Partial Point Cloud Completion and Registration

MVP Benchmark: Multi-View Partial Point Clouds for Completion and Registration [NEWS] 2021-07-12 [NEW 🎉 ] The submission on Codalab starts! 2021-07-1

PL 93 Dec 21, 2022
Contains a bunch of different python programm tasks

py_tasks Contains a bunch of different python programm tasks Armstrong.py - calculate Armsrong numbers in range from 0 to n with / without cache and c

Dmitry Chmerenko 1 Dec 17, 2021
This project implements "virtual speed" from heart rate monito

ANT+ Virtual Stride Based Speed and Distance Monitor Overview This project imple

2 May 20, 2022
Classification of EEG data using Deep Learning

Graduation-Project Classification of EEG data using Deep Learning Epilepsy is the most common neurological disease in the world. Epilepsy occurs as a

Osman Alpaydın 5 Jun 24, 2022
PyTorch implementation of 1712.06087 "Zero-Shot" Super-Resolution using Deep Internal Learning

Unofficial PyTorch implementation of "Zero-Shot" Super-Resolution using Deep Internal Learning Unofficial Implementation of 1712.06087 "Zero-Shot" Sup

Jacob Gildenblat 196 Nov 27, 2022
yufan 81 Dec 08, 2022
Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker

Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker This is a full project of image segmentation using the model built with

Htin Aung Lu 1 Jan 04, 2022
Code for T-Few from "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning"

T-Few This repository contains the official code for the paper: "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learni

220 Dec 31, 2022
Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

TensorFlow implementation of 3D Convolutional Neural Networks for Speaker Verification - Official Project Page - Pytorch Implementation This repositor

Amirsina Torfi 753 Dec 17, 2022
Public Implementation of ChIRo from "Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations"

Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations This directory contains the model architectures and experimental

35 Dec 05, 2022