Neural style transfer in PyTorch.

Overview

style-transfer-pytorch

An implementation of neural style transfer (A Neural Algorithm of Artistic Style) in PyTorch, supporting CPUs and Nvidia GPUs. It does automatic multi-scale (coarse-to-fine) stylization to produce high-quality high resolution stylizations, even up to print resolution if the GPUs have sufficient memory. If two GPUs are available, they can both be used to increase the maximum resolution. (Using two GPUs is not faster than using one.)

The algorithm has been modified from that in the literature by:

  • Using the PyTorch pre-trained VGG-19 weights instead of the original VGG-19 weights

  • Changing the padding mode of the first layer of VGG-19 to 'replicate', to reduce edge artifacts

  • When using average or L2 pooling, scaling the result by an empirically derived factor to ensure that the magnitude of the result stays the same on average (Gatys et al. (2015) did not do this)

  • Using an approximation to the MSE loss such that its gradient L1 norm is approximately 1 for content and style losses (in order to approximate the effects of gradient normalization, which produces better visual quality)

  • Normalizing the Gram matrices by the number of elements in each feature map channel rather than by the total number of elements (Johnson et al.) or not normalizing (Gatys et al. (2015))

  • Taking an exponential moving average over the iterates to reduce iterate noise (each new scale is initialized with the previous scale's averaged iterate)

  • Warm-starting the Adam optimizer with scaled-up versions of its first and second moment buffers at the beginning of each new scale, to prevent noise from being added to the iterates at the beginning of each scale

  • Using non-equal weights for the style layers to improve visual quality

  • Stylizing the image at progressively larger scales, each greater by a factor of sqrt(2) (this is improved from the multi-scale scheme given in Gatys et al. (2016))

Example outputs (click for the full-sized version)

Installation

Python 3.6+ is required.

PyTorch is required: follow their installation instructions before proceeding. If you do not have an Nvidia GPU, select None for CUDA. On Linux, you can find out your CUDA version using the nvidia-smi command. PyTorch packages for CUDA versions lower than yours will work, but select the highest you can.

To install style-transfer-pytorch, first clone the repository, then run the command:

pip install -e PATH_TO_REPO

This will install the style_transfer CLI tool. style_transfer uses a pre-trained VGG-19 model (Simonyan et al.), which is 548MB in size, and will download it when first run.

If you have a supported GPU and style_transfer is using the CPU, try using the argument --device cuda:0 to force it to try to use the first CUDA GPU. This should print an informative error message.

Basic usage

style_transfer CONTENT_IMAGE STYLE_IMAGE [STYLE_IMAGE ...] [-o OUTPUT_IMAGE]

Input images will be converted to sRGB when loaded, and output images have the sRGB colorspace. If the output image is a TIFF file, it will be written with 16 bits per channel. Alpha channels in the inputs will be ignored.

style_transfer has many optional arguments: run it with the --help argument to see a full list. Particularly notable ones include:

  • --web enables a simple web interface while the program is running that allows you to watch its progress. It runs on port 8080 by default, but you can change it with --port. If you just want to view the current image and refresh it manually, you can go to /image.

  • --devices manually sets the PyTorch device names. It can be set to cpu to force it to run on the CPU on a machine with a supported GPU, or to e.g. cuda:1 (zero indexed) to select the second CUDA GPU. Two GPUs can be specified, for instance --devices cuda:0 cuda:1. style_transfer will automatically use the first visible CUDA GPU, falling back to the CPU, if it is omitted.

  • -s (--end-scale) sets the maximum image dimension (height and width) of the output. A large image (e.g. 2896x2172) can take around fifteen minutes to generate on an RTX 3090 and will require nearly all of its 24GB of memory. Since both memory usage and runtime increase linearly in the number of pixels (quadratically in the value of the --end-scale parameter), users with less GPU memory or who do not want to wait very long are encouraged to use smaller resolutions. The default is 512.

  • -sw (--style-weights) specifies factors for the weighted average of multiple styles if there is more than one style image specified. These factors are automatically normalized to sum to 1. If omitted, the styles will be blended equally.

  • -cw (--content-weight) sets the degree to which features from the content image are included in the output image. The default is 0.015.

  • -tw (--tv-weight) sets the strength of the smoothness prior. The default is 2.

References

  1. L. Gatys, A. Ecker, M. Bethge (2015), "A Neural Algorithm of Artistic Style"

  2. L. Gatys, A. Ecker, M. Bethge, A. Hertzmann, E. Shechtman (2016), "Controlling Perceptual Factors in Neural Style Transfer"

  3. J. Johnson, A. Alahi, L. Fei-Fei (2016), "Perceptual Losses for Real-Time Style Transfer and Super-Resolution"

  4. A. Mahendran, A. Vedaldi (2014), "Understanding Deep Image Representations by Inverting Them"

  5. D. Kingma, J. Ba (2014), "Adam: A Method for Stochastic Optimization"

  6. K. Simonyan, A. Zisserman (2014), "Very Deep Convolutional Networks for Large-Scale Image Recognition"

Owner
Katherine Crowson
Katherine Crowson
Interactive Terraform visualization. State and configuration explorer.

Rover - Terraform Visualizer Rover is a Terraform visualizer. In order to do this, Rover: generates a plan file and parses the configuration in the ro

Tu Nguyen 2.3k Jan 07, 2023
Losslandscapetaxonomy - Taxonomizing local versus global structure in neural network loss landscapes

Taxonomizing local versus global structure in neural network loss landscapes Int

Yaoqing Yang 8 Dec 30, 2022
Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5)

YOLOv5-GUI 🎉 YOLOv5算法(ver.6及ver.5)的Qt-GUI实现 🎉 Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5). 基于YOLOv5的v5版本和v6版本及Javacr大佬的UI逻辑进行编写

EricFang 12 Dec 28, 2022
ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos

ComPhy This repository holds the code for the paper. ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos, (Under review) PDF Pro

29 Dec 29, 2022
Combining Diverse Feature Priors

Combining Diverse Feature Priors This repository contains code for reproducing the results of our paper. Paper: https://arxiv.org/abs/2110.08220 Blog

Madry Lab 5 Nov 12, 2022
Code for "Layered Neural Rendering for Retiming People in Video."

Layered Neural Rendering in PyTorch This repository contains training code for the examples in the SIGGRAPH Asia 2020 paper "Layered Neural Rendering

Google 154 Dec 16, 2022
Efficient Lottery Ticket Finding: Less Data is More

The lottery ticket hypothesis (LTH) reveals the existence of winning tickets (sparse but critical subnetworks) for dense networks, that can be trained in isolation from random initialization to match

VITA 20 Sep 04, 2022
Project for music generation system based on object tracking and CGAN

Project for music generation system based on object tracking and CGAN The project was inspired by MIDINet: A Convolutional Generative Adversarial Netw

1 Nov 21, 2021
PyTorch Implementation of PIXOR: Real-time 3D Object Detection from Point Clouds

PIXOR: Real-time 3D Object Detection from Point Clouds This is a custom implementation of the paper from Uber ATG using PyTorch 1.0. It represents the

Philip Huang 270 Dec 14, 2022
We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Facebook Research 42 Dec 09, 2022
Temporally Efficient Vision Transformer for Video Instance Segmentation, CVPR 2022, Oral

Temporally Efficient Vision Transformer for Video Instance Segmentation Temporally Efficient Vision Transformer for Video Instance Segmentation (CVPR

Hust Visual Learning Team 203 Dec 31, 2022
Revisiting Video Saliency: A Large-scale Benchmark and a New Model (CVPR18, PAMI19)

DHF1K =========================================================================== Wenguan Wang, J. Shen, M.-M Cheng and A. Borji, Revisiting Video Sal

Wenguan Wang 126 Dec 03, 2022
Large scale PTM - PPI relation extraction

Large-scale protein-protein post-translational modification extraction with distant supervision and confidence calibrated BioBERT The silver standard

1 Feb 25, 2022
PyTorch implementation of Deformable Convolution

Deformable Convolutional Networks in PyTorch This repo is an implementation of Deformable Convolution. Ported from author's MXNet implementation. Buil

411 Dec 16, 2022
coldcuts is an R package to automatically generate and plot segmentation drawings in R

coldcuts coldcuts is an R package that allows you to draw and plot automatically segmentations from 3D voxel arrays. The name is inspired by one of It

2 Sep 03, 2022
A package related to building quasi-fibration symmetries

qf A package related to building quasi-fibration symmetries. If you'd like to learn more about how it works, see the brief explanation and References

Paolo Boldi 1 Dec 01, 2021
🧑‍🔬 verify your TEAL program by experiment and observation

Graviton - Testing TEAL with Dry Runs Tutorial Local Installation The following instructions assume that you have make available in your local environ

Algorand 18 Jan 03, 2023
Introduction to AI assignment 1 HCM University of Technology, term 211

Sokoban Bot Introduction to AI assignment 1 HCM University of Technology, term 211 Abstract This is basically a solver for Sokoban game using Breadth-

Quang Minh 4 Dec 12, 2022
Fast Axiomatic Attribution for Neural Networks (NeurIPS*2021)

Fast Axiomatic Attribution for Neural Networks This is the official repository accompanying the NeurIPS 2021 paper: R. Hesse, S. Schaub-Meyer, and S.

Visual Inference Lab @TU Darmstadt 11 Nov 21, 2022
Open-sourcing the Slates Dataset for recommender systems research

FINN.no Recommender Systems Slate Dataset This repository accompany the paper "Dynamic Slate Recommendation with Gated Recurrent Units and Thompson Sa

FINN.no 48 Nov 28, 2022