PyTorch evaluation code for Delving Deep into the Generalization of Vision Transformers under Distribution Shifts.

Overview

Out-of-distribution Generalization Investigation on Vision Transformers

This repository contains PyTorch evaluation code for Delving Deep into the Generalization of Vision Transformers under Distribution Shifts.

A Quick Glance of Our Work

A quick glance of our investigation observations. left: Investigation of IID/OOD Generalization Gap implies that ViTs generalize better than CNNs under most types of distribution shifts. right: Combined with generalization-enhancing methods, we achieve significant performance boosts on the OOD data by 4% compared with vanilla ViTs, and consistently outperform the corresponding CNN models. The enhanced ViTs also have smaller IID/OOD Generalization Gap than the ehhanced BiT models.

Taxonomy of Distribution Shifts

Illustration of our taxonomy of distribution shifts. We build the taxonomy upon what kinds of semantic concepts are modified from the original image. We divide the distribution shifts into five cases: background shifts, corruption shifts, texture shifts, destruction shifts, and style shifts. We apply the proxy -distance (PAD) as an empirical measurement of distribution shifts. We select a representative sample of each distribution shift type and rank them by their PAD values (illustrated nearby the stars), respectively. Please refer to the literature for details.

Datasets Used for Investigation

  • Background Shifts. ImageNet-9 is adopted for background shifts. ImageNet-9 is a variety of 9-class datasets with different foreground-background recombination plans, which helps disentangle the impacts of foreground and background signals on classification. In our case, we use the four varieties of generated background with foreground unchanged, including 'Only-FG', 'Mixed-Same', 'Mixed-Rand' and 'Mixed-Next'. The 'Original' data set is used to represent in-distribution data.
  • Corruption Shifts. ImageNet-C is used to examine generalization ability under corruption shifts. ImageNet-C includes 15 types of algorithmically generated corruptions, grouped into 4 categories: ‘noise’, ‘blur’, ‘weather’, and ‘digital’. Each corruption type has five levels of severity, resulting in 75 distinct corruptions.
  • Texture Shifts. Cue Conflict Stimuli and Stylized-ImageNet are used to investigate generalization under texture shifts. Utilizing style transfer, Geirhos et al. generated Cue Conflict Stimuli benchmark with conflicting shape and texture information, that is, the image texture is replaced by another class with other object semantics preserved. In this case, we respectively report the shape and texture accuracy of classifiers for analysis. Meanwhile, Stylized-ImageNet is also produced in Geirhos et al. by replacing textures with the style of randomly selected paintings through AdaIN style transfer.
  • Destruction Shifts. Random patch-shuffling is utilized for destruction shifts to destruct images into random patches. This process can destroy long-range object information and the severity increases as the split numbers grow. In addition, we make a variant by further divide each patch into two right triangles and respectively shuffle two types of triangles. We name the process triangular patch-shuffling.
  • Style Shifts. ImageNet-R and DomainNet are used for the case of style shifts. ImageNet-R contains 30000 images with various artistic renditions of 200 classes of the original ImageNet validation data set. The renditions in ImageNet-R are real-world, naturally occurring variations, such as paintings or embroidery, with textures and local image statistics which differ from those of ImageNet images. DomainNet is a recent benchmark dataset for large-scale domain adaptation that consists of 345 classes and 6 domains. As labels of some domains are very noisy, we follow the 7 distribution shift scenarios in Saito et al. with 4 domains (Real, Clipart, Painting, Sketch) picked.

Generalization-Enhanced Vision Transformers

A framework overview of the three designed generalization-enhanced ViTs. All networks use a Vision Transformer as feature encoder and a label prediction head . Under this setting, the inputs to the models have labeled source examples and unlabeled target examples. top left: T-ADV promotes the network to learn domain-invariant representations by introducing a domain classifier for domain adversarial training. top right: T-MME leverage the minimax process on the conditional entropy of target data to reduce the distribution gap while learning discriminative features for the task. The network uses a cosine similarity-based classifier architecture to produce class prototypes. bottom: T-SSL is an end-to-end prototype-based self-supervised learning framework. The architecture uses two memory banks and to calculate cluster centroids. A cosine classifier is used for classification in this framework.

Run Our Code

Environment Installation

conda create -n vit python=3.6
conda activate vit
conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.0 -c pytorch

Before Running

conda activate vit
PYTHONPATH=$PYTHONPATH:.

Evaluation

CUDA_VISIBLE_DEVICES=0 python main.py \
--model deit_small_b16_384 \
--num-classes 345 \
--checkpoint data/checkpoints/deit_small_b16_384_baseline_real.pth.tar \
--meta-file data/metas/DomainNet/sketch_test.jsonl \
--root-dir data/images/DomainNet/sketch/test

Experimental Results

DomainNet

DeiT_small_b16_384

confusion matrix for the baseline model

clipart painting real sketch
clipart 80.25 33.75 55.26 43.43
painting 36.89 75.32 52.08 31.14
real 50.59 45.81 84.78 39.31
sketch 52.16 35.27 48.19 71.92

Above used models could be found here.

Remarks

  • These results may slightly differ from those in our paper due to differences of the environments.

  • We will continuously update this repo.

Citation

If you find these investigations useful in your research, please consider citing:

@misc{zhang2021delving,  
      title={Delving Deep into the Generalization of Vision Transformers under Distribution Shifts}, 
      author={Chongzhi Zhang and Mingyuan Zhang and Shanghang Zhang and Daisheng Jin and Qiang Zhou and Zhongang Cai and Haiyu Zhao and Shuai Yi and Xianglong Liu and Ziwei Liu},  
      year={2021},  
      eprint={2106.07617},  
      archivePrefix={arXiv},  
      primaryClass={cs.CV}  
}
Owner
Chongzhi Zhang
I am a Master Degree Candidate student, from Beihang University.
Chongzhi Zhang
Lightweight mmm - Lightweight (Bayesian) Media Mix Model

Lightweight (Bayesian) Media Mix Model This is not an official Google product. L

Google 342 Jan 03, 2023
Ian Covert 130 Jan 01, 2023
Official code for "Mean Shift for Self-Supervised Learning"

MSF Official code for "Mean Shift for Self-Supervised Learning" Requirements Python = 3.7.6 PyTorch = 1.4 torchvision = 0.5.0 faiss-gpu = 1.6.1 In

UMBC Vision 44 Nov 21, 2022
FluidNet re-written with ATen tensor lib

fluidnet_cxx: Accelerating Fluid Simulation with Convolutional Neural Networks. A PyTorch/ATen Implementation. This repository is based on the paper,

JoliBrain 50 Jun 07, 2022
Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch

Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch Reference Paper URL Author: Yi Tay, Dara Bahri, Donald Metzler

Myeongjun Kim 66 Nov 30, 2022
Convenient tool for speeding up the intern/officer review process.

icpc-app-screen Convenient tool for speeding up the intern/officer applicant review process. Eliminates the pain from reading application responses of

1 Oct 30, 2021
PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization using Augmented-Self Reference and Dense Semantic Correspondence) and pre-trained model on ImageNet dataset

Reference-Based-Sketch-Image-Colorization-ImageNet This is a PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization usin

Yuzhi ZHAO 11 Jul 28, 2022
Keras documentation, hosted live at keras.io

Keras.io documentation generator This repository hosts the code used to generate the keras.io website. Generating a local copy of the website pip inst

Keras 2k Jan 08, 2023
SAPIEN Manipulation Skill Benchmark

ManiSkill Benchmark SAPIEN Manipulation Skill Benchmark (abbreviated as ManiSkill, pronounced as "Many Skill") is a large-scale learning-from-demonstr

Hao Su's Lab, UCSD 107 Jan 08, 2023
Genshin-assets - 👧 Public documentation & static assets for Genshin Impact data.

genshin-assets This repo provides easy access to the Genshin Impact assets, primarily for use on static sites. Sources Genshin Optimizer - An Artifact

Zerite Development 5 Nov 22, 2022
PyDeepFakeDet is an integrated and scalable tool for Deepfake detection.

PyDeepFakeDet An integrated and scalable library for Deepfake detection research. Introduction PyDeepFakeDet is an integrated and scalable Deepfake de

Junke, Wang 49 Dec 11, 2022
Image augmentation library in Python for machine learning.

Augmentor is an image augmentation library in Python for machine learning. It aims to be a standalone library that is platform and framework independe

Marcus D. Bloice 4.8k Jan 07, 2023
Analyzing basic network responses to novel classes

novelty-detection Analyzing how AlexNet responds to novel classes with varying degrees of similarity to pretrained classes from ImageNet. If you find

Noam Eshed 34 Oct 02, 2022
Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive losses

Self-supervised learning Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive loss

Arijit Das 2 Mar 26, 2022
Header-only library for using Keras models in C++.

frugally-deep Use Keras models in C++ with ease Table of contents Introduction Usage Performance Requirements and Installation FAQ Introduction Would

Tobias Hermann 927 Jan 05, 2023
City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces

City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces Paper Temporary GitHub page for City Surfaces paper. More soon! While designing s

14 Nov 10, 2022
A light-weight image labelling tool for Python designed for creating segmentation data sets.

An image labelling tool for creating segmentation data sets, for Django and Flask.

117 Nov 21, 2022
CyTran: Cycle-Consistent Transformers for Non-Contrast to Contrast CT Translation

CyTran: Cycle-Consistent Transformers for Non-Contrast to Contrast CT Translation We propose a novel approach to translate unpaired contrast computed

Nicolae Catalin Ristea 13 Jan 02, 2023
Deep Learning Models for Causal Inference

Extensive tutorials for learning how to build deep learning models for causal inference using selection on observables in Tensorflow 2.

Bernard J Koch 151 Dec 31, 2022
Wider-Yolo Kütüphanesi ile Yüz Tespit Uygulamanı Yap

WIDER-YOLO : Yüz Tespit Uygulaması Yap Wider-Yolo Kütüphanesinin Kullanımı 1. Wider Face Veri Setini İndir Train Dataset Val Dataset Test Dataset Not:

Kadir Nar 6 Aug 22, 2022