[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.

Related tags

Deep Learningrapid
Overview

[ICLR 2021] RAPID: A Simple Approach for Exploration in Reinforcement Learning

This is the Tensorflow implementation of ICLR 2021 paper Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments. We propose a simple method RAPID for exploration through scroring the previous episodes and reproducing the good exploration behaviors with imitation learning. overview

The implementation is based on OpenAI baselines. For all the experiments, add the option --disable_rapid to see the baseline result. RAPID can achieve better performance and sample efficiency than state-of-the-art exploration methods on MiniGrid environments. rendering performance

Cite This Work

@inproceedings{
zha2021rank,
title={Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments},
author={Daochen Zha and Wenye Ma and Lei Yuan and Xia Hu and Ji Liu},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=MtEE0CktZht}
}

Installation

Please make sure that you have Python 3.5+ installed. First, clone the repo with

git clone https://github.com/daochenzha/rapid.git
cd rapid

Then install the dependencies with pip:

pip install -r requirements.txt
pip install -e .

To run MuJoCo experiments, you need to have the MuJoCo license. Install mujoco-py with

pip install mujoco-py==1.50.1.68

How to run the code

The entry is main.py. Some important hyperparameters are as follows.

  • --env: what environment to be used
  • --num_timesteps: the number of timesteps to be run
  • --w0: the weight of extrinsic reward score
  • --w1: the weight of local score
  • --w2: the weight of global score
  • --sl_until: do the RAPID update until which timestep
  • --disable_rapid: use it to compare with PPO baseline
  • --log_dir: the directory to save logs

Reproducing the result of MiniGrid environments

For MiniGrid-KeyCorridorS3R2, run

python main.py --env MiniGrid-KeyCorridorS3R2-v0 --sl_until 1200000

For MiniGrid-KeyCorridorS3R3, run

python main.py --env MiniGrid-KeyCorridorS3R3-v0 --sl_until 3000000

For other environments, run

python main.py --env $ENV

where $ENV is the environment name.

Run MiniWorld Maze environment

  1. Clone the latest master branch of MiniWorld and install it
git clone -b master --single-branch --depth=1 https://github.com/maximecb/gym-miniworld.git
cd gym-miniwolrd
pip install -e .
cd ..
  1. Start training with
python main.py --env MiniWorld-MazeS5-v0 --num_timesteps 5000000 --nsteps 512 --w1 0.00001 --w2 0.0 --log_dir results/MiniWorld-MazeS5-v0

For server without screens, you may install xvfb with

apt-get install xvfb

Then start training with

xvfb-run -a -s "-screen 0 1024x768x24 -ac +extension GLX +render -noreset" python main.py --env MiniWorld-MazeS5-v0 --num_timesteps 5000000 --nsteps 512 --w1 0.00001 --w2 0.0 --log_dir results/MiniWorld-MazeS5-v0

Run MuJoCo experiments

Run

python main.py --seed 0 --env $env --num_timesteps 5000000 --lr 5e-4 --w1 0.001 --w2 0.0 --log_dir logs/$ENV/rapid

where $ENV can be EpisodeSwimmer-v2, EpisodeHopper-v2, EpisodeWalker2d-v2, EpisodeInvertedPendulum-v2, DensityEpisodeSwimmer-v2, or ViscosityEpisodeSwimmer-v2.

Owner
Daochen Zha
PhD student in Machine Learning and Data Mining
Daochen Zha
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
Datasets for new state-of-the-art challenge in disentanglement learning

High resolution disentanglement datasets This repository contains the Falcor3D and Isaac3D datasets, which present a state-of-the-art challenge for co

NVIDIA Research Projects 37 May 26, 2022
Hyperparameter Optimization for TensorFlow, Keras and PyTorch

Hyperparameter Optimization for Keras Talos • Key Features • Examples • Install • Support • Docs • Issues • License • Download Talos radically changes

Autonomio 1.6k Dec 15, 2022
Implementation of ICCV21 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers

Implementation of ICCV 2021 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers arxiv This repository is based on detr Recently, DETR

twang 113 Dec 27, 2022
🏖 Keras Implementation of Painting outside the box

Keras implementation of Image OutPainting This is an implementation of Painting Outside the Box: Image Outpainting paper from Standford University. So

Bendang 1.1k Dec 10, 2022
SPRING is a seq2seq model for Text-to-AMR and AMR-to-Text (AAAI2021).

SPRING This is the repo for SPRING (Symmetric ParsIng aNd Generation), a novel approach to semantic parsing and generation, presented at AAAI 2021. Wi

Sapienza NLP group 98 Dec 21, 2022
AI-based, context-driven network device ranking

Batea A batea is a large shallow pan of wood or iron traditionally used by gold prospectors for washing sand and gravel to recover gold nuggets. Batea

Secureworks Taegis VDR 269 Nov 26, 2022
Custom implementation of Corrleation Module

Pytorch Correlation module this is a custom C++/Cuda implementation of Correlation module, used e.g. in FlowNetC This tutorial was used as a basis for

Clément Pinard 361 Dec 12, 2022
The implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021

DynamicNeuralGarments Introduction This repository contains the implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021. ./GarmentMoti

42 Dec 27, 2022
Yet another video caption

Yet another video caption

Fan Zhimin 5 May 26, 2022
Auxiliary Raw Net (ARawNet) is a ASVSpoof detection model taking both raw waveform and handcrafted features as inputs, to balance the trade-off between performance and model complexity.

Overview This repository is an implementation of the Auxiliary Raw Net (ARawNet), which is ASVSpoof detection system taking both raw waveform and hand

6 Jul 08, 2022
Demos of essentia classifiers hosted on replicate.ai

essentia-replicate-demos Demos of Essentia models hosted on replicate.ai's MTG site. The models Check our site for a complete list of the models avail

Music Technology Group - Universitat Pompeu Fabra 12 Nov 14, 2022
GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training @ KDD 2020

GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training Original implementation for paper GCC: Graph Contrastive Coding for Graph Neural N

THUDM 274 Dec 27, 2022
Numerical-computing-is-fun - Learning numerical computing with notebooks for all ages.

As much as this series is to educate aspiring computer programmers and data scientists of all ages and all backgrounds, it is also a reminder to mysel

EKA foundation 758 Dec 25, 2022
Python PID Tuner - Makes a model of the System from a Process Reaction Curve and calculates PID Gains

PythonPID_Tuner_SOPDT Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a r

1 Jan 18, 2022
Efficient Online Bayesian Inference for Neural Bandits

Efficient Online Bayesian Inference for Neural Bandits By Gerardo Durán-Martín, Aleyna Kara, and Kevin Murphy AISTATS 2022.

Probabilistic machine learning 49 Dec 27, 2022
Toward Spatially Unbiased Generative Models (ICCV 2021)

Toward Spatially Unbiased Generative Models Implementation of Toward Spatially Unbiased Generative Models (ICCV 2021) Overview Recent image generation

Jooyoung Choi 88 Dec 01, 2022
DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models

DSEE Codes for [Preprint] DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models Xuxi Chen, Tianlong Chen, Yu Cheng, Weizhu Ch

VITA 4 Dec 27, 2021
Unofficial implementation of One-Shot Free-View Neural Talking Head Synthesis

face-vid2vid Usage Dataset Preparation cd datasets wget https://yt-dl.org/downloads/latest/youtube-dl -O youtube-dl chmod a+rx youtube-dl python load_

worstcoder 68 Dec 30, 2022
Transformer Tracking (CVPR2021)

TransT - Transformer Tracking [CVPR2021] Official implementation of the TransT (CVPR2021) , including training code and trained models. We are revisin

chenxin 465 Jan 06, 2023