Numerical-computing-is-fun - Learning numerical computing with notebooks for all ages.

Overview

As much as this series is to educate aspiring computer programmers and data scientists of all ages and all backgrounds, it is also a reminder to myself. After playing with computers and numbers for nearly 4 decades, I've also made this to keep in mind how to have fun with computers and maths.

Using Jupyter notebooks as an interactive learning medium, this series provides an introduction to:

  • Computer Science
  • Python programming language
  • Numerical computing
  • Numbers theory
  • Prime numbers
  • Data visualization
  • Deep learning

Interactive in Mybinder:

Binder

Interative in Azure (requires logging in):

Static in Nbviewer:

Use the link provided for each part below the corresponding title.

Launch in Binder (no login required)

Click the badge in the corresponding part below.

Part 1 : Introduction

Start learning here or

Binder

What you will learn:

  • print is the command to print something on the screen
  • Math operations are very easy to perform in Python
  • Python deals with numbers based on data types
  • In Python there are two numerical data types; int and float
  • Functions are powerful tools to easily perform various operations
  • Functions may accept arguments (parameters) as input
  • Functions are computer processes, and arguments are what is being processed
  • It's very easy to create your own functions

Part 2 : Prime Numbers

Continue learning here.

Binder

What you will learn:

  • Prime numbers relate with divisibility
  • Divisibility means that when one number is divided by other, the product is not a whole number
  • A prime number is any number that is divisible only by itself and 1
  • Binary means 0 and 1
  • Boolean logic is the binary language of computers
  • Python gives us an easy to use way to instruct computers
  • Boolean logic statements involve is, is not, and and or statements
  • Boolean statements can be joined together
  • Boolean statements always return either True or False as output
  • It's easy to perform computing operations with small numbers
  • The biggest prime number is a really big number
  • Very big numbers require vast networks of computers joined together

Part 3 : Algorithms Overview

Continue learning here.

Binder

What you will learn:

  • Algoritms are like insides of factories
  • Algoritms process inputs to produce outputs
  • Conditional statements are a tool for putting boolean logic in to action
  • Conditional statements are part of "flow control"
  • Flow controls give us the ability to create rules for computer programs
  • The three conditional statements in Python are if, else and elif
  • Even just if alone can be used to create a conditional statement

Part 4: Automation Overview

Continue learning here.

Binder

What you will learn:

  • Generally speaking computer programs are focused on process automation
  • Loops are a highly effective method for automation
  • With small changes to our code, we can make big improvements in capability
  • Sometimes we can get more done with less code!
  • It's very convinient to store values in to memory
  • Computer memory is nothing like human memory, and also not like a safe deposit box
  • Any value can be stored in to memory
  • Numbers can be automatically generated with range function
  • It's meaningful to learn new concepts by gradually improving things

CREDITS

Numerical Computing is Fun is an Eka Foundation project.

Owner
EKA foundation
EKA foundation
Implementation of fast algorithms for Maximum Spanning Tree (MST) parsing that includes fast ArcMax+Reweighting+Tarjan algorithm for single-root dependency parsing.

Fast MST Algorithm Implementation of fast algorithms for (Maximum Spanning Tree) MST parsing that includes fast ArcMax+Reweighting+Tarjan algorithm fo

Miloš Stanojević 11 Oct 14, 2022
This is the winning solution of the Endocv-2021 grand challange.

Endocv2021-winner [Paper] This is the winning solution of the Endocv-2021 grand challange. Dependencies pytorch # tested with 1.7 and 1.8 torchvision

Vajira Thambawita 14 Dec 03, 2022
Neural Point-Based Graphics

Neural Point-Based Graphics Project   Video   Paper Neural Point-Based Graphics Kara-Ali Aliev1 Artem Sevastopolsky1,2 Maria Kolos1,2 Dmitry Ulyanov3

Ali Aliev 252 Dec 13, 2022
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Contributors of this repo: Zhibo Zhang ( Zhibo (Darren) Zhang 18 Nov 01, 2022

Official NumPy Implementation of Deep Networks from the Principle of Rate Reduction (2021)

Deep Networks from the Principle of Rate Reduction This repository is the official NumPy implementation of the paper Deep Networks from the Principle

Ryan Chan 49 Dec 16, 2022
Collect super-resolution related papers, data, repositories

Collect super-resolution related papers, data, repositories

WangChaofeng 1.7k Jan 03, 2023
Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank

This repository provides the official code for replicating experiments from the paper: Semi-Supervised Semantic Segmentation with Pixel-Level Contrast

Iñigo Alonso Ruiz 58 Dec 15, 2022
Source code for The Power of Many: A Physarum Swarm Steiner Tree Algorithm

Physarum-Swarm-Steiner-Algo Source code for The Power of Many: A Physarum Steiner Tree Algorithm Code implements ideas from the following papers: Sher

Sheryl Hsu 2 Mar 28, 2022
Deployment of PyTorch chatbot with Flask

Chatbot Deployment with Flask and JavaScript In this tutorial we deploy the chatbot I created in this tutorial with Flask and JavaScript. This gives 2

Patrick Loeber (Python Engineer) 107 Dec 29, 2022
FairMOT - A simple baseline for one-shot multi-object tracking

FairMOT - A simple baseline for one-shot multi-object tracking

Yifu Zhang 3.6k Jan 08, 2023
git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Commonsense Knowledge Base Completion with Structural and Semantic Context Code for the paper Commonsense Knowledge Base Completion with Structural an

AI2 96 Nov 05, 2022
VISSL is FAIR's library of extensible, modular and scalable components for SOTA Self-Supervised Learning with images.

What's New Below we share, in reverse chronological order, the updates and new releases in VISSL. All VISSL releases are available here. [Oct 2021]: V

Meta Research 2.9k Jan 07, 2023
Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021, Pytorch)

S2VD Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021) Requirements and Dependencies Ubuntu 16.04, cuda 10.0 Python 3.6.10, P

Zongsheng Yue 53 Nov 23, 2022
Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation

Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation This is the implementation of the approach describ

Taosha Fan 47 Nov 15, 2022
JAX code for the paper "Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation"

Optimal Model Design for Reinforcement Learning This repository contains JAX code for the paper Control-Oriented Model-Based Reinforcement Learning wi

Evgenii Nikishin 43 Sep 28, 2022
Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other

ML_Model_implementaion Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other dectree_model: Implementation o

Anshuman Dalai 3 Jan 24, 2022
Architecture Patterns with Python (TDD, DDD, EDM)

architecture-traning Architecture Patterns with Python (TDD, DDD, EDM) Chapter 5. 높은 기어비와 낮은 기어비의 TDD 5.2 도메인 계층 테스트를 서비스 계층으로 옮겨야 하는가? 도메인 계층 테스트 def

minsung sim 2 Mar 04, 2022
Progressive Coordinate Transforms for Monocular 3D Object Detection

Progressive Coordinate Transforms for Monocular 3D Object Detection This repository is the official implementation of PCT. Introduction In this paper,

58 Nov 06, 2022
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023