Architecture Patterns with Python (TDD, DDD, EDM)

Overview

architecture-traning

Architecture Patterns with Python (TDD, DDD, EDM)

Chapter 5. 높은 기어비와 낮은 기어비의 TDD

5.2 도메인 계층 테스트를 서비스 계층으로 옮겨야 하는가?

  • 도메인 계층 테스트
def test_prefers_current_stock_batches_to_shipments():
    in_stock_batch = Batch("in_stock_batch", "RETRO-CLOCK", 100, eta=None)
    shipment_batch = Batch("shipment-batch", "RETRO-CLOCK", 100, eta=tomorrow)
    line = OrderLine("oref", "RETRO-CLOCK", 10)
    allocate(line, [in_stock_batch, shipment_batch])

    assert in_stock_batch.available_quantity == 90
    assert shipment_batch.available_quantity == 100
  • 서비스 계층 테스트
def test_prefers_warehouse_batches_to_shipments():
    in_stock_batch = Batch("in-stock-batch", "RETRO-CLOCK", 100, eta=None)
    shipment_batch = Batch("shipment-batch", "RETRO-CLOCK", 100, eta=tomorrow)
    repo = FakeRepository([in_stock_batch, shipment_batch])
    session = FakeSession()
    line = OrderLine('oref', "RETRO-CLOCK", 10)
    services.allocate(line, repo, session)

    assert in_stock_batch.available_quantity == 90
    assert shipment_batch.available_quantity == 100

왜 도메인 계층의 테스트가 아닌 서비스 계층 테스트로 해야할까?

  1. 시스템을 바꾸는 데 어렵지 않다.
  2. 서비스 계층은 시스템을 다양한 방식으로 조정할 수 있는 API를 형성한다.

5.5 서비스 계층 테스트를 도메인으로부터 완전히 분리하기

  • 서비스 테스트에는 도메인 모델에 대한 의존성이 있다. 테스트 데이터를 설정하고 서비스 계층 함수를 호출하기 위해 도메인 객체를 사용하기 때문이다.
  • API를 원시 타입만 사용하도록 다시 작성한다.
# 이전 allocate는 도메인 객체를 받았다.
def allocate(line: OrderLine, repoL AbstractRepository, session) -> str:

# 도메인 의존성을 줄이기 위해 문자열과 정수를 받는다.  -> 원시 타입만 사용!
def allocate(orderid: str, sku: str, qty: int, repo:AbstractRepository, session) -> str:
  • ex) 직접 Batch 객체를 인스턴스화하므로 여전히 도메인에 의존하고 있다. 나중에 Batch 모델의 동작을 변경하면 수많은 테스트를 변경해야하기에 적합하지 않다.
def test_returns_allocation():
    batch = model.Batch("batch1", "Coplicated-lamp", 100, eta=None)
    repo = FakeRepository([batch])
    
    result = services.allocate("o1", "Coplicated-lamp", 10, repo, FakeSession())
    assert result == "batch1"

###5.5.1 위 예시에 대한 해결책 - 마이그레이션: 모든 도메인 의존성을 픽스처 함수에 넣기

  • FakeRepository에 팩토리 함수를 추가하여 추상화를 달성하는 방법 => 도메인 의존성을 한 군데로 모을 수 있다.
class FakeRepository(set):
    @staticmethod
    def for_batch(ref, sku, qty, eta=None):
        return FakeRepository([
            model.Batch(ref, sku, qty, eta)
        ])

    ...
    def test_returns_allocation(self):
        repo = FakeRepository.for_batch("batch1", "Complicated-lamp", 100, eta=None)
        result = services.allocate("o1", "Complicated-lamp", 10, repo, FakeSession())
        
        assert result == "batch1"

###5.5.2 예시 해결책: 누락된 서비스 추가

  • 재고를 추가하는 서비스가 있다면 이 서비스를 사용해 온전히 서비스 계층의 공식적인 유스 케이스만 사용하는 서비스 계층 테스트를 작성할 수 있다.

tip: 일반적으로 서비스 계층 테스트에서 도메인 계층에 있는 요소가 필요하다면 이는 서비스 계층이 완전하지 않다는 사실이다.

def test_add_batch():
    repo, session = FakeSession([]), FakeSession()
    services.add_batch("b1", "Crunchy-armchair", 100, None, repo, session)
    assert repo.get("b1") is not None
    assert session.committed

서비스만 사용하는 서비스 테스트 example code

  • 서비스 계층 테스트가 오직 서비스 계층에만 의존하기 때문에 얼마든지 필요에 따라 모델을 리팩터링할 수 있다.
def test_allocate_returns_allocation():
    repo, session = FakeRepository([]), FakeSession()
    services.add_batch("batch1", "COMPLICATED-LAMP", 100, None, repo, session)
    result = services.allocate("o1", "COMPLICATED-LAMP", 10, repo, session)
    assert result == "batch1"


def test_allocate_errors_for_invalid_sku():
    repo, session = FakeRepository([]), FakeSession()
    services.add_batch("b1", "AREALSKU", 100, None, repo, session)

    with pytest.raises(services.InvalidSku, match="Invalid sku NONEXISTENTSKU"):
        services.allocate("o1", "NONEXISTENTSKU", 10, repo, FakeSession())

5.6 E2E 테스트에 도달할 때까지 계속 개선하기

  • 서비스 함수 덕에 엔드포인트를 추가하는 것이 쉬워졌다 JSON을 약간 조작하고 함수를 한 번 호출하면 된다.
@app.route("/add_batch", methods=['POST'])
def add_batch():
    session = get_session()
    repo = repository.SqlAlchemyRepository(session)
    eta = request.json["eta"]

    if eta is not None:
        eta = datetime.fromisoformat(eta).date()
        
    # JSON 조작 함수 한번 호출
    services.add_batch(
        request.json["ref"],
        request.json["sku"],
        request.json["qty"],
        eta,
        repo,
        session,
    )
    return "OK", 201


@app.route("/allocate", methods=["POST"])
def allocate_endpoint():
    session = get_session()
    repo = repository.SqlAlchemyRepository(session)
    try:
        # JSON 조작 함수 한번 호출
        batchref = services.allocate(
            request.json["orderid"],
            request.json["sku"],
            request.json["qty"],
            repo,
            session,
        )
    except (model.OutOfStock, services.InvalidSku) as e:
        return {"message": str(e)}, 400

    return {"batchref": batchref}, 201

정리: 여러 유형의 테스트를 작성하는 간단한 규칙

  • 특성당 엔드투엔드 테스트를 하나씩 만든다는 목표를 세워야 한다.

    • 예를 들어 이런 테스트는 HTTP API를 사용할 가능성이 높다. 목표는 어떤 특성이 잘 작동하는지 보고 움직이는 모든 부품이 서로 잘 연결되어 움직이는지 살펴보는 것이다.
  • 테스트 대부분은 서비스 계층을 만드는 걸 권한다.

    • 이런 테스트는 커버리지, 실행 시간, 효율 사이를 잘 절충할 수 있게 해준다. 각 테스트는 어떤 기능의 한 경로를 테스트하고 I/O에 가짜 객체를 사용하는 경향이 있다. 이 테스트는 모든 에지 케이스를 다루고, 비즈니스 로직의 모든 입력과 출력을 테스트해볼 수 있는 좋은 장소다.
  • 도메인 모델을 사용하는 핵심 테스트를 적게 작성하고 유지하는 걸 권한다.

    • 이런 테스트는 좀 더 커버리지가 작고(좁은 범위를 테스트), 더 깨지기 쉽다. 하지만 이런 테스트가 제공하는 피드백이 가장 크다. 이런 테스트를 나중에 서비스 계층 기반 테스트로 대신할 수 있다면 테스트를 주저하지 말고 삭제하는 것을 권한다.
  • 오류 처리도 특성으로 취급하자.

    • 이상적인 경우 애플리케이션은 모든 오류가 진입점(예: 플라스크)으로 거슬러 올라와서 처리되는 구조로 되어 있다. 단지 각 기능의 정상 경로만 테스트하고 모든 비정상 경로를 테스트하는 엔드투엔드 테스트를 하나만 유지하면 된다는 의미다(물론 비정상 경로를 테스트하는 단위 테스트가 많이 있어야 한다.).
Owner
minsung sim
Cryptocurrency Quant Trader
minsung sim
Repository providing a wide range of self-supervised pretrained models for computer vision tasks.

Hierarchical Pretraining: Research Repository This is a research repository for reproducing the results from the project "Self-supervised pretraining

Colorado Reed 53 Nov 09, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
🐥A PyTorch implementation of OpenAI's finetuned transformer language model with a script to import the weights pre-trained by OpenAI

PyTorch implementation of OpenAI's Finetuned Transformer Language Model This is a PyTorch implementation of the TensorFlow code provided with OpenAI's

Hugging Face 1.4k Jan 05, 2023
A Quick and Dirty Progressive Neural Network written in TensorFlow.

prog_nn .▄▄ · ▄· ▄▌ ▐ ▄ ▄▄▄· ▐ ▄ ▐█ ▀. ▐█▪██▌•█▌▐█▐█ ▄█▪ •█▌▐█ ▄▀▀▀█▄▐█▌▐█▪▐█▐▐▌ ██▀

SynPon 53 Dec 12, 2022
Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh

generate_cloud_points Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh. Run python disp_mesh.py Or you

Peng Yu 2 Dec 24, 2021
Py-FEAT: Python Facial Expression Analysis Toolbox

Py-FEAT is a suite for facial expressions (FEX) research written in Python. This package includes tools to detect faces, extract emotional facial expressions (e.g., happiness, sadness, anger), facial

Computational Social Affective Neuroscience Laboratory 147 Jan 06, 2023
Code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic and Aleatoric Uncertainty

Deep Deterministic Uncertainty This repository contains the code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic

Jishnu Mukhoti 69 Nov 28, 2022
Accurate Phylogenetic Inference with Symmetry-Preserving Neural Networks

Accurate Phylogenetic Inference with a Symmetry-preserving Neural Network Model Claudia Solis-Lemus Shengwen Yang Leonardo Zepeda-Núñez This repositor

Leonardo Zepeda-Núñez 2 Feb 11, 2022
Asymmetric metric learning for knowledge transfer

Asymmetric metric learning This is the official code that enables the reproduction of the results from our paper: Asymmetric metric learning for knowl

20 Dec 06, 2022
[ICCV 2021] HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration

HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration Introduction The repository contains the source code and pre-tr

Intelligent Sensing, Perception and Computing Group 55 Dec 14, 2022
Simultaneous NMT/MMT framework in PyTorch

This repository includes the codes, the experiment configurations and the scripts to prepare/download data for the Simultaneous Machine Translation wi

<a href=[email protected]"> 37 Sep 29, 2022
2021:"Bridging Global Context Interactions for High-Fidelity Image Completion"

TFill arXiv | Project This repository implements the training, testing and editing tools for "Bridging Global Context Interactions for High-Fidelity I

Chuanxia Zheng 111 Jan 08, 2023
Implementation of fast algorithms for Maximum Spanning Tree (MST) parsing that includes fast ArcMax+Reweighting+Tarjan algorithm for single-root dependency parsing.

Fast MST Algorithm Implementation of fast algorithms for (Maximum Spanning Tree) MST parsing that includes fast ArcMax+Reweighting+Tarjan algorithm fo

Miloš Stanojević 11 Oct 14, 2022
Angular & Electron desktop UI framework. Angular components for native looking and behaving macOS desktop UI (Electron/Web)

Angular Desktop UI This is a collection for native desktop like user interface components in Angular, especially useful for Electron apps. It starts w

Marc J. Schmidt 49 Dec 22, 2022
A pyparsing-based library for parsing SOQL statements

CONTRIBUTORS WANTED!! Installation pip install python-soql-parser or, with poetry poetry add python-soql-parser Usage from python_soql_parser import p

Kicksaw 0 Jun 07, 2022
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022
Notebooks em Python para Métodos Eletromagnéticos

GeoSci Labs This is a repository of code used to power the notebooks and interactive examples for https://em.geosci.xyz and https://gpg.geosci.xyz. Th

Victor Cezar Tocantins 1 Nov 16, 2021
Tree-based Search Graph for Approximate Nearest Neighbor Search

TBSG: Tree-based Search Graph for Approximate Nearest Neighbor Search. TBSG is a graph-based algorithm for ANNS based on Cover Tree, which is also an

Fanxbin 2 Dec 27, 2022
The implementation of CVPR2021 paper Temporal Query Networks for Fine-grained Video Understanding, by Chuhan Zhang, Ankush Gupta and Andrew Zisserman.

Temporal Query Networks for Fine-grained Video Understanding 📋 This repository contains the implementation of CVPR2021 paper Temporal_Query_Networks

55 Dec 21, 2022
An University Project of Quera Web Crawling.

WebCrawlerProject An University Project of Quera Web Crawling. خزشگر اینستاگرام در این پروژه شما باید با استفاده از کتابخانه های زیر یک خزشگر اینستاگر

Mahdi 3 Aug 12, 2022