An University Project of Quera Web Crawling.

Overview

WebCrawlerProject

An University Project of Quera Web Crawling.

خزشگر اینستاگرام

در این پروژه شما باید با استفاده از کتابخانه های زیر یک خزشگر اینستاگرام بنویسید

  • BeautifulSoup
  • requests
  • Selenium
  • Tkinter
  • pandas
  • threading

استفاده از بسته های دیگر در این پروژه مجاز نمی باشد

برنامه شما باید حاوی بخش های زیر باشد

* یک هشتگ دلخواه را در اینستاگرام جست و جو کند و n اکانتی را که در نتایج جست و جوی اینستاگرام حاوی این هشتگها بوده اند لیست کند. n باید پارامتریک باشد و ابتدای برنامه قابل تنظیم باشد
* در مرحله بعد m پست آخر هر یک از این اکانت ها را در نظر بگیرید و متن کامنت های ذیل هر کدام از این پست ها را به همراه تعداد لایک های آن استخراج کنید. m باید به صورت پارامتری قابل تنظیم باشد
* اطلاعات ذخیره شده را در یک دیتافریم و نهایتا روی هارد ذخیره کنید. دیتافریم شما باید حاوی کامنت، نام کاربری نویسنده کامنت ، نام کاربری اکانت پست اصلی و تعداد لایک های کامنت باشد
* یک واسط کاربری گرافیکی (که ترجیحا با tkinter ایجاد شده باشد) که دارای ابزارهای لازم برای تعامل با کاربر و نمایش خروجی های مورد نظر باشد. از جمله:
- در این پنجره کاربر باید بتواند لیست اکانت هایی را که برنامه شما سراغ پست های آنها خواهد رفت را ببیند و آنها را کم یا زیاد کند
- مقدار m و n را تنظیم کند
- همچنین باید در این پنجره به کاربر نشان داده شود که تا کنون چه تعداد از اکانتها خزش شده اند و چه تعداد باقی مانده است
- زمان سپری شده و زمان تخمینی تا انتهای کار نیز باید نمایش داده شود.پس از پایان کار نیز گزارشی از زمان سپری شده برای کل کار را نشان دهد
- محل ذخیره فایل خروجی روی هارد توسط کاربر تعیین شود
- اضافه کردن موارد دیگر در این واسط گرافیکی نمره امتیازی خواهد داشت
* برنامه شما باید به صورت مالتی ترد نوشته شود. می توانید انتخاب کنید که برای خزش هر اکانت از یک ترد استفاده کنید یا برای خزش هر کامنت یک ترد جدید ایجاد کنید. در صورتی که اجرای برنامه شما از سایر هم کلاسی هایتان سریع تر باشد، نمره امتیازی خواهد داشت
* در این برنامه استایل برنامه نویسی شئ گرا مد نظر نیست؛ اما در صورت پیاده سازی این برنامه به صورتی شئ گرا، نمره امتیازی خواهد داشت
* توابع و کلاسهایی که تعریف میکنید باید دارای داک استرینگ باشند. تمیز بودن کدها طبق اصول معرفی شده در کلاس درس الزامی است

بخش امتیازی ویژه

یک مساله خاص را در نظر بگیرید و هشتگ های مرتبط با آن را از طریق برنامه خودتان جست و جو یا کنید. مثلا فرض کنید می خواهید ببینید کامنتهای افراد در مورد شرکت سامسونگ چه قدر مثبت منفی است. تمام هشتگ های مربوط به شرکت سامسونگ از جمله انواع برندهای مربوطه و ... را از طریق برنامه خودتان جست و جو کنید کامنتهای مربوطه را استخراج کنید.

سپس تعداد 1000تا از کامنتها را به صورت تصادفی درنظر بگیرید و آنها را برچسب گذاری کنید. به این صورت که اگر کامنت دارای نظر مثبت نسبت به شرکت سامسونگ بود، برچست مثبت، در صورتی که دارای نظر منفی بود، برچسب منفی و در غیر این صورت دارای برچسب خنثی باشد. )به صورت معمول برچسب گذاری 1000 تا کامنت کمتر از 2 ساعت از شما زمان می گیرد. می توانید این بخش از کار را به کمک سایر همکلاسی هایتان انجام دهید. هر چه تعداد کامنتها در این بخش بیشتر باشد، دقت خروجی شما بیشتر می شود.

با استفاده از ماژول fasttext در پایتون می توانید یک مدل بسازید که از روی این 1000 کامنت برچسب خورده تا حدی الگوی نظرات مثبت و منفی را یاد بگیرد. سپس این مدل می تواند با درکی که نسبت به منفی یا مثبت بودن یک نظر پیدا کرده، نظر خودش را درباره مثبت و منفی بودن هر کامنت جدیدی اعلام کند! بنابراین می توانید با این مدل تمام نظرات را تست کنید و بررسی کنید چه میزان از نظرات مثبت یا منفی بوده اند.برنامه شما میتواند گزارش کند که چه تعداد از نظرات کاربران درباره این موضوع مثبت یا منفی بوده است. (یا به صورت درصد نمایش دهد)

Owner
Mahdi
Hi, I'm Mahdi. I love everything related to computers.
Mahdi
[arXiv] What-If Motion Prediction for Autonomous Driving ❓🚗💨

WIMP - What If Motion Predictor Reference PyTorch Implementation for What If Motion Prediction [PDF] [Dynamic Visualizations] Setup Requirements The W

William Qi 96 Dec 29, 2022
This is the official implementation of "One Question Answering Model for Many Languages with Cross-lingual Dense Passage Retrieval".

CORA This is the official implementation of the following paper: Akari Asai, Xinyan Yu, Jungo Kasai and Hannaneh Hajishirzi. One Question Answering Mo

Akari Asai 59 Dec 28, 2022
A large-scale benchmark for co-optimizing the design and control of soft robots, as seen in NeurIPS 2021.

Evolution Gym A large-scale benchmark for co-optimizing the design and control of soft robots. As seen in Evolution Gym: A Large-Scale Benchmark for E

121 Dec 14, 2022
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
Code release for Universal Domain Adaptation(CVPR 2019)

Universal Domain Adaptation Code release for Universal Domain Adaptation(CVPR 2019) Requirements python 3.6+ PyTorch 1.0 pip install -r requirements.t

THUML @ Tsinghua University 229 Dec 23, 2022
Denoising Normalizing Flow

Denoising Normalizing Flow Christian Horvat and Jean-Pascal Pfister 2021 We combine Normalizing Flows (NFs) and Denoising Auto Encoder (DAE) by introd

CHrvt 17 Oct 15, 2022
Rethinking the U-Net architecture for multimodal biomedical image segmentation

MultiResUNet Rethinking the U-Net architecture for multimodal biomedical image segmentation This repository contains the original implementation of "M

Nabil Ibtehaz 308 Jan 05, 2023
[NeurIPS2021] Code Release of Learning Transferable Perturbations

Learning Transferable Adversarial Perturbations This is an official release of the paper Learning Transferable Adversarial Perturbations. The code is

Krishna Kanth 17 Nov 11, 2022
Implementation of Barlow Twins paper

barlowtwins PyTorch Implementation of Barlow Twins paper: Barlow Twins: Self-Supervised Learning via Redundancy Reduction This is currently a work in

IgorSusmelj 86 Dec 20, 2022
Official PyTorch implementation of SyntaSpeech (IJCAI 2022)

SyntaSpeech: Syntax-Aware Generative Adversarial Text-to-Speech | | | | 中文文档 This repository is the official PyTorch implementation of our IJCAI-2022

Zhenhui YE 116 Nov 24, 2022
Xi Dongbo 78 Nov 29, 2022
DTCN SMP Challenge - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
Fast image augmentation library and an easy-to-use wrapper around other libraries

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
A custom DeepStack model that has been trained detecting ONLY the USPS logo

This repository provides a custom DeepStack model that has been trained detecting ONLY the USPS logo. This was created after I discovered that the Deepstack OpenLogo custom model I was using did not

Stephen Stratoti 9 Dec 27, 2022
Trading environnement for RL agents, backtesting and training.

TradzQAI Trading environnement for RL agents, backtesting and training. Live session with coinbasepro-python is finaly arrived ! Available sessions: L

Tony Denion 164 Oct 30, 2022
Personal project about genus-0 meshes, spherical harmonics and a cow

How to transform a cow into spherical harmonics ? Spot the cow, from Keenan Crane's blog Context In the field of Deep Learning, training on images or

3 Aug 22, 2022
NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset

NOD (Night Object Detection) Dataset NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset, BM

Igor Morawski 17 Nov 05, 2022
OrienMask: Real-time Instance Segmentation with Discriminative Orientation Maps

OrienMask This repository implements the framework OrienMask for real-time instance segmentation. It achieves 34.8 mask AP on COCO test-dev at the spe

45 Dec 13, 2022
Predict halo masses from simulations via graph neural networks

HaloGraphNet Predict halo masses from simulations via Graph Neural Networks. Given a dark matter halo and its galaxies, creates a graph with informati

Pablo Villanueva Domingo 20 Nov 15, 2022
A whale detector design for the Kaggle whale-detector challenge!

CNN (InceptionV1) + STFT based Whale Detection Algorithm So, this repository is my PyTorch solution for the Kaggle whale-detection challenge. The obje

Tarin Ziyaee 92 Sep 28, 2021