An University Project of Quera Web Crawling.

Overview

WebCrawlerProject

An University Project of Quera Web Crawling.

خزشگر اینستاگرام

در این پروژه شما باید با استفاده از کتابخانه های زیر یک خزشگر اینستاگرام بنویسید

  • BeautifulSoup
  • requests
  • Selenium
  • Tkinter
  • pandas
  • threading

استفاده از بسته های دیگر در این پروژه مجاز نمی باشد

برنامه شما باید حاوی بخش های زیر باشد

* یک هشتگ دلخواه را در اینستاگرام جست و جو کند و n اکانتی را که در نتایج جست و جوی اینستاگرام حاوی این هشتگها بوده اند لیست کند. n باید پارامتریک باشد و ابتدای برنامه قابل تنظیم باشد
* در مرحله بعد m پست آخر هر یک از این اکانت ها را در نظر بگیرید و متن کامنت های ذیل هر کدام از این پست ها را به همراه تعداد لایک های آن استخراج کنید. m باید به صورت پارامتری قابل تنظیم باشد
* اطلاعات ذخیره شده را در یک دیتافریم و نهایتا روی هارد ذخیره کنید. دیتافریم شما باید حاوی کامنت، نام کاربری نویسنده کامنت ، نام کاربری اکانت پست اصلی و تعداد لایک های کامنت باشد
* یک واسط کاربری گرافیکی (که ترجیحا با tkinter ایجاد شده باشد) که دارای ابزارهای لازم برای تعامل با کاربر و نمایش خروجی های مورد نظر باشد. از جمله:
- در این پنجره کاربر باید بتواند لیست اکانت هایی را که برنامه شما سراغ پست های آنها خواهد رفت را ببیند و آنها را کم یا زیاد کند
- مقدار m و n را تنظیم کند
- همچنین باید در این پنجره به کاربر نشان داده شود که تا کنون چه تعداد از اکانتها خزش شده اند و چه تعداد باقی مانده است
- زمان سپری شده و زمان تخمینی تا انتهای کار نیز باید نمایش داده شود.پس از پایان کار نیز گزارشی از زمان سپری شده برای کل کار را نشان دهد
- محل ذخیره فایل خروجی روی هارد توسط کاربر تعیین شود
- اضافه کردن موارد دیگر در این واسط گرافیکی نمره امتیازی خواهد داشت
* برنامه شما باید به صورت مالتی ترد نوشته شود. می توانید انتخاب کنید که برای خزش هر اکانت از یک ترد استفاده کنید یا برای خزش هر کامنت یک ترد جدید ایجاد کنید. در صورتی که اجرای برنامه شما از سایر هم کلاسی هایتان سریع تر باشد، نمره امتیازی خواهد داشت
* در این برنامه استایل برنامه نویسی شئ گرا مد نظر نیست؛ اما در صورت پیاده سازی این برنامه به صورتی شئ گرا، نمره امتیازی خواهد داشت
* توابع و کلاسهایی که تعریف میکنید باید دارای داک استرینگ باشند. تمیز بودن کدها طبق اصول معرفی شده در کلاس درس الزامی است

بخش امتیازی ویژه

یک مساله خاص را در نظر بگیرید و هشتگ های مرتبط با آن را از طریق برنامه خودتان جست و جو یا کنید. مثلا فرض کنید می خواهید ببینید کامنتهای افراد در مورد شرکت سامسونگ چه قدر مثبت منفی است. تمام هشتگ های مربوط به شرکت سامسونگ از جمله انواع برندهای مربوطه و ... را از طریق برنامه خودتان جست و جو کنید کامنتهای مربوطه را استخراج کنید.

سپس تعداد 1000تا از کامنتها را به صورت تصادفی درنظر بگیرید و آنها را برچسب گذاری کنید. به این صورت که اگر کامنت دارای نظر مثبت نسبت به شرکت سامسونگ بود، برچست مثبت، در صورتی که دارای نظر منفی بود، برچسب منفی و در غیر این صورت دارای برچسب خنثی باشد. )به صورت معمول برچسب گذاری 1000 تا کامنت کمتر از 2 ساعت از شما زمان می گیرد. می توانید این بخش از کار را به کمک سایر همکلاسی هایتان انجام دهید. هر چه تعداد کامنتها در این بخش بیشتر باشد، دقت خروجی شما بیشتر می شود.

با استفاده از ماژول fasttext در پایتون می توانید یک مدل بسازید که از روی این 1000 کامنت برچسب خورده تا حدی الگوی نظرات مثبت و منفی را یاد بگیرد. سپس این مدل می تواند با درکی که نسبت به منفی یا مثبت بودن یک نظر پیدا کرده، نظر خودش را درباره مثبت و منفی بودن هر کامنت جدیدی اعلام کند! بنابراین می توانید با این مدل تمام نظرات را تست کنید و بررسی کنید چه میزان از نظرات مثبت یا منفی بوده اند.برنامه شما میتواند گزارش کند که چه تعداد از نظرات کاربران درباره این موضوع مثبت یا منفی بوده است. (یا به صورت درصد نمایش دهد)

Owner
Mahdi
Hi, I'm Mahdi. I love everything related to computers.
Mahdi
iNAS: Integral NAS for Device-Aware Salient Object Detection

iNAS: Integral NAS for Device-Aware Salient Object Detection Introduction Integral search design (jointly consider backbone/head structures, design/de

顾宇超 77 Dec 02, 2022
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 321 Dec 27, 2022
[ICCV' 21] "Unsupervised Point Cloud Pre-training via Occlusion Completion"

OcCo: Unsupervised Point Cloud Pre-training via Occlusion Completion This repository is the official implementation of paper: "Unsupervised Point Clou

Hanchen 204 Dec 24, 2022
Python Fanduel API (2021) - Lineup Automation

Southpaw is a python package that provides access to the Fanduel API. Optimize your DFS experience by programmatically updating your lineups, analyzin

Brandin Canfield 13 Jan 04, 2023
This is the official implementation for the paper "Heterogeneous Multi-player Multi-armed Bandits: Closing the Gap and Generalization" in NeurIPS 2021.

MPMAB_BEACON This is code used for the paper "Decentralized Multi-player Multi-armed Bandits: Beyond Linear Reward Functions", Neurips 2021. Requireme

Cong Shen Research Group 0 Oct 26, 2021
A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning

CLEVR Dataset Generation This is the code used to generate the CLEVR dataset as described in the paper: CLEVR: A Diagnostic Dataset for Compositional

Facebook Research 503 Jan 04, 2023
CarND-LaneLines-P1 - Lane Finding Project for Self-Driving Car ND

Finding Lane Lines on the Road Overview When we drive, we use our eyes to decide where to go. The lines on the road that show us where the lanes are a

Udacity 769 Dec 27, 2022
The official repository for Deep Image Matting with Flexible Guidance Input

FGI-Matting The official repository for Deep Image Matting with Flexible Guidance Input. Paper: https://arxiv.org/abs/2110.10898 Requirements easydict

Hang Cheng 51 Nov 10, 2022
A LiDAR point cloud cluster for panoptic segmentation

Divide-and-Merge-LiDAR-Panoptic-Cluster A demo video of our method with semantic prior: More information will be coming soon! As a PhD student, I don'

YimingZhao 65 Dec 22, 2022
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection, CVPR 2021. Installation A Linux pla

Tianning Yuan 269 Dec 21, 2022
This is a library for training and applying sparse fine-tunings with torch and transformers.

This is a library for training and applying sparse fine-tunings with torch and transformers. Please refer to our paper Composable Sparse Fine-Tuning f

Cambridge Language Technology Lab 37 Dec 30, 2022
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

xxxnell 656 Dec 30, 2022
QueryDet: Cascaded Sparse Query for Accelerating High-Resolution SmallObject Detection

QueryDet-PyTorch This repository is the official implementation of our paper: QueryDet: Cascaded Sparse Query for Accelerating High-Resolution Small O

Chenhongyi Yang 276 Dec 31, 2022
An implementation of Deep Forest 2021.2.1.

Deep Forest (DF) 21 DF21 is an implementation of Deep Forest 2021.2.1. It is designed to have the following advantages: Powerful: Better accuracy than

LAMDA Group, Nanjing University 795 Jan 03, 2023
A Python library that enables ML teams to share, load, and transform data in a collaborative, flexible, and efficient way :chestnut:

Squirrel Core Share, load, and transform data in a collaborative, flexible, and efficient way What is Squirrel? Squirrel is a Python library that enab

Merantix Momentum 249 Dec 07, 2022
Face Mask Detection system based on computer vision and deep learning using OpenCV and Tensorflow/Keras

Face Mask Detection Face Mask Detection System built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Chandrika Deb 1.4k Jan 03, 2023
Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper

Divide and Remaster Utility Tools Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper The DnR d

Darius Petermann 46 Dec 11, 2022
Lab course materials for IEMBA 8/9 course "Coding and Artificial Intelligence"

IEMBA 8/9 - Coding and Artificial Intelligence Dear IEMBA 8/9 students, welcome to our IEMBA 8/9 elective course Coding and Artificial Intelligence, t

Artificial Intelligence & Machine Learning (AI:ML Lab) @ HSG 1 Jan 11, 2022