OrienMask: Real-time Instance Segmentation with Discriminative Orientation Maps

Overview

OrienMask

This repository implements the framework OrienMask for real-time instance segmentation.

It achieves 34.8 mask AP on COCO test-dev at the speed of 42.7 FPS evaluated with a single RTX 2080Ti. (log)

Paper: Real-time Instance Segmentation with Discriminative Orientation Maps

Installation

Please see INSTALL.md to prepare the environment and dataset.

Usage

Place the pre-trained backbone (link) and trained model (link) as follows for convenience (otherwise update the corresponding path in configurations):

├── checkpoints
│   ├── pretrained
│   │   ├──pretrained_darknet53.pth
│   ├── OrienMaskAnchor4FPNPlus
│   │   ├──orienmask_yolo.pth

train

Three items should be noticed when deploying different number of GPUs: n_gpu, batch_size, accumulate. Keep in mind that the approximate batch size equals to n_gpu * batch_size * accumulate.

# multi-gpu train (n_gpu=2, batch_size=8, accumulate=1)
# if necessary, set MASTER_PORT to avoid port conflict
# if permission error, run `chmod +x dist_train.sh`
CUDA_VISIBLE_DEVICES=0,1 ./dist_train.sh \
    -c orienmask_yolo_coco_544_anchor4_fpn_plus

# single-gpu train (n_gpu=1, batch_size=8, accumulate=2)
CUDA_VISIBLE_DEVICES=0 ./dist_train.sh \
    -c orienmask_yolo_coco_544_anchor4_fpn_plus
# or
CUDA_VISIBLE_DEVICES=0 python train.py \
    -c orienmask_yolo_coco_544_anchor4_fpn_plus

test

Run the following command to obtain AP and AR metrics on val2017 split:

CUDA_VISIBLE_DEVICES=0 python test.py \
    -c orienmask_yolo_coco_544_anchor4_fpn_plus_test \
    -w checkpoints/OrienMaskAnchor4FPNPlus/orienmask_yolo.pth

infer

Please run python infer.py -h for more usages.

# infer on an image and save the visualized result
CUDA_VISIBLE_DEVICES=0 python infer.py \
    -c orienmask_yolo_coco_544_anchor4_fpn_plus_infer \
    -w checkpoints/OrienMaskAnchor4FPNPlus/orienmask_yolo.pth \
    -i assets/000000163126.jpg -v -o outputs

# infer on a list of images and save the visualized results
CUDA_VISIBLE_DEVICES=0 python infer.py \
    -c orienmask_yolo_coco_544_anchor4_fpn_plus_infer \
    -w checkpoints/OrienMaskAnchor4FPNPlus/orienmask_yolo.pth \
    -d coco/test2017 -l assets/test_dev_selected.txt -v -o outputs

logs

We provide two types of logs for monitoring the training process. The first is updated on the terminal which is also stored in a train.log file in the checkpoint directory. The other is the tensorboard whose statistics are kept in the checkpoint directory.

Citation

@article{du2021realtime,
  title={Real-time Instance Segmentation with Discriminative Orientation Maps}, 
  author={Du, Wentao and Xiang, Zhiyu and Chen, Shuya and Qiao, Chengyu and Chen, Yiman and Bai, Tingming},
  journal={arXiv preprint arXiv:2106.12204},
  year={2021}
}
PIXIE: Collaborative Regression of Expressive Bodies

PIXIE: Collaborative Regression of Expressive Bodies [Project Page] This is the official Pytorch implementation of PIXIE. PIXIE reconstructs an expres

Yao Feng 331 Jan 04, 2023
Kaggle-titanic - A tutorial for Kaggle's Titanic: Machine Learning from Disaster competition. Demonstrates basic data munging, analysis, and visualization techniques. Shows examples of supervised machine learning techniques.

Kaggle-titanic This is a tutorial in an IPython Notebook for the Kaggle competition, Titanic Machine Learning From Disaster. The goal of this reposito

Andrew Conti 800 Dec 15, 2022
HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation Official PyTorch Implementation

: We present a novel, real-time, semantic segmentation network in which the encoder both encodes and generates the parameters (weights) of the decoder. Furthermore, to allow maximal adaptivity, the w

Yuval Nirkin 182 Dec 14, 2022
Code for "Localization with Sampling-Argmax", NeurIPS 2021

Localization with Sampling-Argmax [Paper] [arXiv] [Project Page] Localization with Sampling-Argmax Jiefeng Li, Tong Chen, Ruiqi Shi, Yujing Lou, Yong-

JeffLi 71 Dec 17, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022
PyTorch code of paper "LiVLR: A Lightweight Visual-Linguistic Reasoning Framework for Video Question Answering"

LiVLR-VideoQA We propose a Lightweight Visual-Linguistic Reasoning framework (LiVLR) for VideoQA. The overview of LiVLR: Evaluation on MSRVTT-QA Datas

JJ Jiang 7 Dec 30, 2022
An off-line judger supporting distributed problem repositories

Thaw 中文 | English Thaw is an off-line judger supporting distributed problem repositories. Everyone can use Thaw release problems with license on GitHu

countercurrent_time 2 Jan 09, 2022
Companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsura et al.

META-RS This is the companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsu

Bosch Research 7 Dec 09, 2022
Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a

Facebook Research 171 Nov 23, 2022
《DeepViT: Towards Deeper Vision Transformer》(2021)

DeepViT This repo is the official implementation of "DeepViT: Towards Deeper Vision Transformer". The repo is based on the timm library (https://githu

109 Dec 02, 2022
Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks.

Heterogeneous Graph Benchmark Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks. Roadmap We organize our repo by task, and on

THUDM 176 Dec 17, 2022
Food recognition model using convolutional neural network & computer vision

Food recognition model using convolutional neural network & computer vision. The goal is to match or beat the DeepFood Research Paper

Hemanth Chandran 1 Jan 13, 2022
A lossless neural compression framework built on top of JAX.

Kompressor Branch CI Coverage main (active) main development A neural compression framework built on top of JAX. Install setup.py assumes a compatible

Rosalind Franklin Institute 2 Mar 14, 2022
Use AI to generate a optimized stock portfolio

Use AI, Modern Portfolio Theory, and Monte Carlo simulation's to generate a optimized stock portfolio that minimizes risk while maximizing returns. Ho

Greg James 30 Dec 22, 2022
C3DPO - Canonical 3D Pose Networks for Non-rigid Structure From Motion.

C3DPO: Canonical 3D Pose Networks for Non-Rigid Structure From Motion By: David Novotny, Nikhila Ravi, Benjamin Graham, Natalia Neverova, Andrea Vedal

Meta Research 309 Dec 16, 2022
Code for the TASLP paper "PSLA: Improving Audio Tagging With Pretraining, Sampling, Labeling, and Aggregation".

PSLA: Improving Audio Tagging with Pretraining, Sampling, Labeling, and Aggregation Introduction Getting Started FSD50K Recipe AudioSet Recipe Label E

Yuan Gong 84 Dec 27, 2022
This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning].

CG3 This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning]. R

12 Oct 28, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
Interactive Image Generation via Generative Adversarial Networks

iGAN: Interactive Image Generation via Generative Adversarial Networks Project | Youtube | Paper Recent projects: [pix2pix]: Torch implementation for

Jun-Yan Zhu 3.9k Dec 23, 2022
Digan - Official PyTorch implementation of Generating Videos with Dynamics-aware Implicit Generative Adversarial Networks

DIGAN (ICLR 2022) Official PyTorch implementation of "Generating Videos with Dyn

Sihyun Yu 147 Dec 31, 2022