Personal project about genus-0 meshes, spherical harmonics and a cow

Related tags

Deep Learningmesh2sh
Overview

How to transform a cow into spherical harmonics ?

Spot the cow, from Keenan Crane's blog

Spot

Context

In the field of Deep Learning, training on images or text has made enormous progress in recent years (with a lot of data available + CNN/Transformers). The results are not yet as good for other types of signals, such as videos or 3D models. For 3D models, some recent models use a graph-based approach to deal with 3D meshes, such as Polygen. However, these networks remain difficult to train. There are plenty of alternative representations that have been used to train a Deep network on 3D models: voxels, multiview, point clouds, each having their advantages and disadvantages. In this project, I wanted to try a new one. In topology, a 3D model is nothing more than a 2D surface (possibly colored) embedded into a 3D space. If the surface is closed, we can define an interior and an exterior, but that's it. It is not like a scalar field, which is defined throughout space. Since the data is 2D, it would be useful to be able to project this 3D representation in a 2D Euclidean space, on a uniform grid, like an image, to be able to use a 2D CNN to predict our 3D models.

Deep Learning models have proven effective in learning from mel-spectrograms of audio signals, combined with convolutions. How to exploit this idea for 3D models? All periodic signals can be approximated by Fourier series. We can therefore use a Fourier series to represent any periodic function in the complex plane. In geometry, the "drawing" of this function is a closed line, so it has the topology of a circle, in 2D space. I tried to generalize this idea by using meshes with a spherical topology, which I reprojected on the sphere using a conformal (angle preserving) parametrization, then for which I calculated the harmonics thanks to a single base, that of spherical harmonics.

The origin of this project is inspired by this video by 3blue1brown.

Spherical harmonics of a 3D mesh

We only use meshes that have the topology of a sphere, i.e. they must be manifold and genus 0. The main idea is to get a spherical parametrization of the mesh, to define where are the attributes of the mesh on the sphere. Then, the spherical harmonic coefficients that best fit these attributes are calculated.

The attributes that interest us to describe the structure of the mesh are:

  • Its geometric properties. We could directly give the XYZ coordinates, but thanks to the parametrization algorithm that is used, only the density of curvature is necessary. Consequently, we also need to know the area distortion, since our parametrization is not authalic (area preserving).
  • Its colors, in RGB format. For simplicity, here I use colors by vertices, and not with a UV texture, so it loses detail.
  • The vertex density of the mesh, which allows to put more vertices in areas that originally had a lot. This density is obtained using Von Mises-Fisher kernel density estimator.

Calculates the spherical parametrization of the mesh, then displays its various attributes

First step

The spherical harmonic coefficients can be represented as images, with the coefficients corresponding to m=0 on the diagonal. The low frequencies are at the top left.

Spherical harmonics coefficients amplitude as an image for each attribute

Spherical harmonic images

Reconstruction

We can reconstruct the model from the 6 sets of coefficients, which act as 6 functions on the sphere. We first make a spherical mesh inspired by what they made in "A Curvature and Density based Generative Representation of Shapes". Some points are sampled according to the vertex density function. We then construct an isotropic mesh with respect to a given density, using Centroidal Voronoi Tesselation. The colors are interpolated at each vertex.

Then the shape is obtained by reversing our spherical parametrization. The spherical parametrization uses a mean curvature flow, which is a simple spherical parametrizations. We use the conformal variant from Can Mean-Curvature Flow Be Made Non-Singular?.

Mean curvature flow equations. See Roberta Alessandroni's Introduction to mean curvature flow for more details on the notations MCF

Reconstruction of the mesh using only spherical harmonics coefficients First step

Remarks

This project is a proof of concept. It allows to represent a model which has the topology of a sphere in spherical harmonics form. The results could be more precise, first with an authalic (area-preserving) parametrization rather than a conformal (angle-preserving) one. Also, I did not try to train a neural network using this representation, because that requires too much investment. It takes some pre-processing on common 3D datasets to keep only the watertight genus-0 meshes, and then you have to do the training, which takes time. If anyone wants to try, I'd be happy to help.

I did it out of curiosity, and to gain experience, not to have an effective result. All algorithms used were coded in python/pytorch except for some solvers from SciPy and spherical harmonics functions from shtools. It makes it easier to read, but it could be faster using other libraries.

Demo

Check the demo in Google Colab : Open In Colab

To use the functions of this project you need the dependencies below. The versions indicated are those that I have used, and are only indicative.

  • python (3.9.10)
  • pytorch (1.9.1)
  • scipy (1.7.3)
  • scikit-sparse (0.4.6)
  • pyshtools (4.9.1)

To run the demo main.ipynb, you also need :

  • jupyterlab (3.2.9)
  • trimesh (3.10.0)
  • pyvista (0.33.2)
  • pythreejs (optional, 2.3.0)

You can run these lines to install everything on Linux using conda :

conda create --name mesh2sh
conda activate mesh2sh
conda install python=3.9
conda install scipy=1.7 -c anaconda
conda install pytorch=1.9 cudatoolkit=11 -c pytorch -c conda-forge
conda install gmt intel-openmp -c conda-forge
conda install pyshtools pyvista jupyterlab -c conda-forge
conda update pyshtools -c conda-forge
pip install scikit-sparse
pip install pythreejs
pip install trimesh

Then just run the demo :

jupyter notebook main.ipynb

Contribution

To run tests, you need pytest and flake8 :

pip install pytest
pip install flake8

You can check coding style using flake8 --max-line-length=120, and run tests using python -m pytest tests/ from the root folder. Also, run the demo again to check that the results are consistent

References

v objective diffusion inference code for JAX.

v-diffusion-jax v objective diffusion inference code for JAX, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The models

Katherine Crowson 186 Dec 21, 2022
ICON: Implicit Clothed humans Obtained from Normals (CVPR 2022)

ICON: Implicit Clothed humans Obtained from Normals Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black CVPR 2022 News 🚩 [2022/04/26] H

Yuliang Xiu 1.1k Jan 04, 2023
CVPR2022 (Oral) - Rethinking Semantic Segmentation: A Prototype View

Rethinking Semantic Segmentation: A Prototype View Rethinking Semantic Segmentation: A Prototype View, Tianfei Zhou, Wenguan Wang, Ender Konukoglu and

Tianfei Zhou 239 Dec 26, 2022
Implementation of "Deep Implicit Templates for 3D Shape Representation"

Deep Implicit Templates for 3D Shape Representation Zerong Zheng, Tao Yu, Qionghai Dai, Yebin Liu. arXiv 2020. This repository is an implementation fo

Zerong Zheng 144 Dec 07, 2022
Train SN-GAN with AdaBelief

SNGAN-AdaBelief Train a state-of-the-art spectral normalization GAN with AdaBelief https://github.com/juntang-zhuang/Adabelief-Optimizer Acknowledgeme

Juntang Zhuang 10 Jun 11, 2022
A web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks

This project is a web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks. Thanks for NVlabs' excelle

K.L. 150 Dec 15, 2022
A Python library for generating new text from existing samples.

ReMarkov is a Python library for generating text from existing samples using Markov chains. You can use it to customize all sorts of writing from birt

8 May 17, 2022
Picasso: a methods for embedding points in 2D in a way that respects distances while fitting a user-specified shape.

Picasso Code to generate Picasso embeddings of any input matrix. Picasso maps the points of an input matrix to user-defined, n-dimensional shape coord

Pachter Lab 45 Dec 23, 2022
DeepFashion2 is a comprehensive fashion dataset.

DeepFashion2 Dataset DeepFashion2 is a comprehensive fashion dataset. It contains 491K diverse images of 13 popular clothing categories from both comm

switchnorm 1.8k Jan 07, 2023
The DL Streamer Pipeline Zoo is a catalog of optimized media and media analytics pipelines.

The DL Streamer Pipeline Zoo is a catalog of optimized media and media analytics pipelines. It includes tools for downloading pipelines and their dependencies and tools for measuring their performace

8 Dec 04, 2022
City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces

City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces Paper Temporary GitHub page for City Surfaces paper. More soon! While designing s

14 Nov 10, 2022
Kernel Point Convolutions

Created by Hugues THOMAS Introduction Update 27/04/2020: New PyTorch implementation available. With SemanticKitti, and Windows supported. This reposit

Hugues THOMAS 584 Jan 07, 2023
MLJetReconstruction - using machine learning to reconstruct jets for CMS

MLJetReconstruction - using machine learning to reconstruct jets for CMS The C++ data extraction code used here was based heavily on that foundv here.

ALPhA Davidson 0 Nov 17, 2021
face2comics by Sxela (Alex Spirin) - face2comics datasets

This is a paired face to comics dataset, which can be used to train pix2pix or similar networks.

Alex 164 Nov 13, 2022
Automatic caption evaluation metric based on typicality analysis.

SeMantic and linguistic UndeRstanding Fusion (SMURF) Automatic caption evaluation metric described in the paper "SMURF: SeMantic and linguistic UndeRs

Joshua Feinglass 6 Jan 09, 2022
The code for paper Efficiently Solve the Max-cut Problem via a Quantum Qubit Rotation Algorithm

Quantum Qubit Rotation Algorithm Single qubit rotation gates $$ U(\Theta)=\bigotimes_{i=1}^n R_x (\phi_i) $$ QQRA for the max-cut problem This code wa

SheffieldWang 0 Oct 18, 2021
PyTorch implementation of PSPNet segmentation network

pspnet-pytorch PyTorch implementation of PSPNet segmentation network Original paper Pyramid Scene Parsing Network Details This is a slightly different

Roman Trusov 532 Dec 29, 2022
PyTorch implementation of the ACL, 2021 paper Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks.

Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks This repo contains the PyTorch implementation of the ACL, 2021 pa

Rabeeh Karimi Mahabadi 98 Dec 28, 2022
😇A pyTorch implementation of the DeepMoji model: state-of-the-art deep learning model for analyzing sentiment, emotion, sarcasm etc

------ Update September 2018 ------ It's been a year since TorchMoji and DeepMoji were released. We're trying to understand how it's being used such t

Hugging Face 865 Dec 24, 2022
A PyTorch implementation of the Relational Graph Convolutional Network (RGCN).

Torch-RGCN Torch-RGCN is a PyTorch implementation of the RGCN, originally proposed by Schlichtkrull et al. in Modeling Relational Data with Graph Conv

Thiviyan Singam 66 Nov 30, 2022