Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch

Overview

NÜWA - Pytorch (wip)

Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch. This repository will be populated in the case that Microsoft does not open source the code by end of December. It may also contain an extension into video and audio, using a dual decoder approach.

DeepReader

Citations

@misc{wu2021nuwa,
    title   = {N\"UWA: Visual Synthesis Pre-training for Neural visUal World creAtion}, 
    author  = {Chenfei Wu and Jian Liang and Lei Ji and Fan Yang and Yuejian Fang and Daxin Jiang and Nan Duan},
    year    = {2021},
    eprint  = {2111.12417},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
Comments
  • Question about generated videos?

    Question about generated videos?

    There are a lot of negative numbers and very small decimals (like 5e-1). But the loss degrades normally when training. Is that a normal situation? How can I make the result visible?

    opened by Fitzwong 0
  • Why the video does not pass through the encoder?

    Why the video does not pass through the encoder?

    Hi! lucidrains. Thanks for providing a great repo which is convenient to understand the NUWA paper.
    I have a question as follows: In the NUWA paper, we can see that the inputs of the Encoder are caption tokens (caption condition) and the video tokens (3DNA condition). So, in my eye, the video tokens sequence should fully self-attend in the Encoder, right? And then, the outputs condition the Decoder. The Decoder provided by you is as following. 截屏2022-05-12 上午11 07 12. It has causal self-attention and text-condition as we expected. But from the definition in paper, the condition contains the text-condition and 3DNA condition, and these two condition the Decoder. Is my opinion right? I am just curious about the condition in the NUWA paper. The Encoder in your repo is only the Text-Encoder, but the video does not pass through the encoder to condition the Encoder.

    Looking forward to your reply! Thanks!

    opened by Wang-Xiaodong1899 0
  • Questions about function forward() in NUWA please.

    Questions about function forward() in NUWA please.

    I'm confused me that, in function forward() of class NUWA, the ground-truth video is fed to transformer and calculate the output video, which is different from function generate().

    frame_embeddings = self.video_transformer(
                frame_embeddings,  # calculated from ground-truth video
                context = text_embeds,
                context_mask = text_mask
            )
    

    So when training NUWA, the loss comes from logits. But the logits are not only from text, but ground-truth video (only one transformer layer, different from the auto-regressive model in generate function). Is that some kind of cheating when training? Or should I generate logits in the same way as in generate(), and then calculate loss to train?

    opened by Fitzwong 1
  • Type of dataset for training VQ-GAN

    Type of dataset for training VQ-GAN

    Hi,

    First, thanks a lot for the amazing work! I have one question regarding the training of the VQ-GAN, do you recommend training it on a dataset similar to the dataset the nuwa model will be trained? What I mean is, if I want to train nuwa to generate sport videos based on text, do I need to also train the VQ-GAN on a sport dataset?

    Thanks a lot

    opened by antonibigata 0
  • Pseudocode for 3DNA?

    Pseudocode for 3DNA?

    me no comprendai le complex einops 😢

    Can someone give the 3DNA pseudocode to illustrate what's going on 🤗

    (Also how did lucidrains bang out thousands of lines of code in a few weeks - is he confirmed to be human? 🤔)

    opened by neel04 4
Releases(0.7.7a)
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
Evaluating deep transfer learning for whole-brain cognitive decoding

Evaluating deep transfer learning for whole-brain cognitive decoding This README file contains the following sections: Project description Repository

Armin Thomas 5 Oct 31, 2022
Pytorch Implementation for NeurIPS (oral) paper: Pixel Level Cycle Association: A New Perspective for Domain Adaptive Semantic Segmentation

Pixel-Level Cycle Association This is the Pytorch implementation of our NeurIPS 2020 Oral paper Pixel-Level Cycle Association: A New Perspective for D

87 Oct 19, 2022
Repo público onde postarei meus estudos de Python, buscando aprender por meio do compartilhamento do aprendizado!

Seja bem vindo à minha repo de Estudos em Python 3! Este é um repositório criado por um programador amador que estuda tópicos de finanças, estatística

32 Dec 24, 2022
Implements the training, testing and editing tools for "Pluralistic Image Completion"

Pluralistic Image Completion ArXiv | Project Page | Online Demo | Video(demo) This repository implements the training, testing and editing tools for "

Chuanxia Zheng 615 Dec 08, 2022
Pytorch implementation of our method for regularizing nerual radiance fields for few-shot neural volume rendering.

InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering Pytorch implementation of our method for regularizing nerual radiance fields f

106 Jan 06, 2023
Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr.

fix_m1_rgb Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr. No warranty provided for using th

Kevin Gao 116 Jan 01, 2023
Example how to deploy deep learning model with aiohttp.

aiohttp-demos Demos for aiohttp project. Contents Imagetagger Deep Learning Image Classifier URL shortener Toxic Comments Classifier Moderator Slack B

aio-libs 661 Jan 04, 2023
Traditional deepdream with VQGAN+CLIP and optical flow. Ready to use in Google Colab

VQGAN-CLIP-Video cat.mp4 policeman.mp4 schoolboy.mp4 forsenBOG.mp4

23 Oct 26, 2022
Official implementation of Rich Semantics Improve Few-Shot Learning (BMVC, 2021)

Rich Semantics Improve Few-Shot Learning Paper Link Abstract : Human learning benefits from multi-modal inputs that often appear as rich semantics (e.

Mohamed Afham 11 Jul 26, 2022
This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems.

Amortized Assimilation This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems. Abstract: T

4 Aug 16, 2022
Pytorch implementation of the paper "Class-Balanced Loss Based on Effective Number of Samples"

Class-balanced-loss-pytorch Pytorch implementation of the paper Class-Balanced Loss Based on Effective Number of Samples presented at CVPR'19. Yin Cui

Vandit Jain 697 Dec 29, 2022
Playing around with FastAPI and streamlit to create a YoloV5 object detector

FastAPI-Streamlit-based-YoloV5-detector Playing around with FastAPI and streamlit to create a YoloV5 object detector It turns out that a User Interfac

2 Jan 20, 2022
A GUI to automatically create a TOPAS-readable MLC simulation file

Python script to create a TOPAS-readable simulation file descriring a Multi-Leaf-Collimator. Builds the MLC using the data from a 3D .stl file.

Sebastian Schäfer 0 Jun 19, 2022
PyTorch implementation of Advantage async actor-critic Algorithms (A3C) in PyTorch

Advantage async actor-critic Algorithms (A3C) in PyTorch @inproceedings{mnih2016asynchronous, title={Asynchronous methods for deep reinforcement lea

LEI TAI 111 Dec 08, 2022
This repository includes different versions of the prescribed-time controller as Simulink blocks and MATLAB script codes for engineering applications.

Prescribed-time Control Prescribed-time control (PTC) blocks in Simulink environment, MATLAB R2020b. For more theoretical details, refer to the papers

Amir Shakouri 1 Mar 11, 2022
Unsupervised Representation Learning via Neural Activation Coding

Neural Activation Coding This repository contains the code for the paper "Unsupervised Representation Learning via Neural Activation Coding" published

yookoon park 5 May 26, 2022
Predict stock movement with Machine Learning and Deep Learning algorithms

Project Overview Stock market movement prediction using LSTM Deep Neural Networks and machine learning algorithms Software and Library Requirements Th

Naz Delam 46 Sep 13, 2022
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

[CVPRW 2021] - Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation

Anirudh S Chakravarthy 6 May 03, 2022
tensorflow implementation of 'YOLO : Real-Time Object Detection'

YOLO_tensorflow (Version 0.3, Last updated :2017.02.21) 1.Introduction This is tensorflow implementation of the YOLO:Real-Time Object Detection It can

Jinyoung Choi 1.7k Nov 21, 2022
Code for the paper: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization (https://arxiv.org/abs/2002.11798)

Representation Robustness Evaluations Our implementation is based on code from MadryLab's robustness package and Devon Hjelm's Deep InfoMax. For all t

Sicheng 19 Dec 07, 2022