Code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic and Aleatoric Uncertainty

Related tags

Deep LearningDDU
Overview

Deep Deterministic Uncertainty

arXiv Pytorch 1.8.1 License: MIT

This repository contains the code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic and Aleatoric Uncertainty.

If the code or the paper has been useful in your research, please add a citation to our work:

@article{mukhoti2021deterministic,
  title={Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic and Aleatoric Uncertainty},
  author={Mukhoti, Jishnu and Kirsch, Andreas and van Amersfoort, Joost and Torr, Philip HS and Gal, Yarin},
  journal={arXiv preprint arXiv:2102.11582},
  year={2021}
}

Dependencies

The code is based on PyTorch and requires a few further dependencies, listed in environment.yml. It should work with newer versions as well.

OoD Detection

Datasets

For OoD detection, you can train on CIFAR-10/100. You can also train on Dirty-MNIST by downloading Ambiguous-MNIST (amnist_labels.pt and amnist_samples.pt) from here and using the following training instructions.

Training

In order to train a model for the OoD detection task, use the train.py script. Following are the main parameters for training:

--seed: seed for initialization
--dataset: dataset used for training (cifar10/cifar100/dirty_mnist)
--dataset-root: /path/to/amnist_labels.pt and amnist_samples.pt/ (if training on dirty-mnist)
--model: model to train (wide_resnet/vgg16/resnet18/resnet50/lenet)
-sn: whether to use spectral normalization (available for wide_resnet, vgg16 and resnets)
--coeff: Coefficient for spectral normalization
-mod: whether to use architectural modifications (leaky ReLU + average pooling in skip connections)
--save-path: path/for/saving/model/

As an example, in order to train a Wide-ResNet-28-10 with spectral normalization and architectural modifications on CIFAR-10, use the following:

python train.py \
       --seed 1 \
       --dataset cifar10 \
       --model wide_resnet \
       -sn -mod \
       --coeff 3.0 

Similarly, to train a ResNet-18 with spectral normalization on Dirty-MNIST, use:

python train.py \
       --seed 1 \
       --dataset dirty-mnist \
       --dataset-root /home/user/amnist/ \
       --model resnet18 \
       -sn \
       --coeff 3.0

Evaluation

To evaluate trained models, use evaluate.py. This script can evaluate and aggregate results over multiple experimental runs. For example, if the pretrained models are stored in a directory path /home/user/models, store them using the following directory structure:

models
├── Run1
│   └── wide_resnet_1_350.model
├── Run2
│   └── wide_resnet_2_350.model
├── Run3
│   └── wide_resnet_3_350.model
├── Run4
│   └── wide_resnet_4_350.model
└── Run5
    └── wide_resnet_5_350.model

For an ensemble of models, store the models using the following directory structure:

model_ensemble
├── Run1
│   ├── wide_resnet_1_350.model
│   ├── wide_resnet_2_350.model
│   ├── wide_resnet_3_350.model
│   ├── wide_resnet_4_350.model
│   └── wide_resnet_5_350.model
├── Run2
│   ├── wide_resnet_10_350.model
│   ├── wide_resnet_6_350.model
│   ├── wide_resnet_7_350.model
│   ├── wide_resnet_8_350.model
│   └── wide_resnet_9_350.model
├── Run3
│   ├── wide_resnet_11_350.model
│   ├── wide_resnet_12_350.model
│   ├── wide_resnet_13_350.model
│   ├── wide_resnet_14_350.model
│   └── wide_resnet_15_350.model
├── Run4
│   ├── wide_resnet_16_350.model
│   ├── wide_resnet_17_350.model
│   ├── wide_resnet_18_350.model
│   ├── wide_resnet_19_350.model
│   └── wide_resnet_20_350.model
└── Run5
    ├── wide_resnet_21_350.model
    ├── wide_resnet_22_350.model
    ├── wide_resnet_23_350.model
    ├── wide_resnet_24_350.model
    └── wide_resnet_25_350.model

Following are the main parameters for evaluation:

--seed: seed used for initializing the first trained model
--dataset: dataset used for training (cifar10/cifar100)
--ood_dataset: OoD dataset to compute AUROC
--load-path: /path/to/pretrained/models/
--model: model architecture to load (wide_resnet/vgg16)
--runs: number of experimental runs
-sn: whether the model was trained using spectral normalization
--coeff: Coefficient for spectral normalization
-mod: whether the model was trained using architectural modifications
--ensemble: number of models in the ensemble
--model-type: type of model to load for evaluation (softmax/ensemble/gmm)

As an example, in order to evaluate a Wide-ResNet-28-10 with spectral normalization and architectural modifications on CIFAR-10 with OoD dataset as SVHN, use the following:

python evaluate.py \
       --seed 1 \
       --dataset cifar10 \
       --ood_dataset svhn \
       --load-path /path/to/pretrained/models/ \
       --model wide_resnet \
       --runs 5 \
       -sn -mod \
       --coeff 3.0 \
       --model-type softmax

Similarly, to evaluate the above model using feature density, set --model-type gmm. The evaluation script assumes that the seeds of models trained in consecutive runs differ by 1. The script stores the results in a json file with the following structure:

{
    "mean": {
        "accuracy": mean accuracy,
        "ece": mean ECE,
        "m1_auroc": mean AUROC using log density / MI for ensembles,
        "m1_auprc": mean AUPRC using log density / MI for ensembles,
        "m2_auroc": mean AUROC using entropy / PE for ensembles,
        "m2_auprc": mean AUPRC using entropy / PE for ensembles,
        "t_ece": mean ECE (post temp scaling)
        "t_m1_auroc": mean AUROC using log density / MI for ensembles (post temp scaling),
        "t_m1_auprc": mean AUPRC using log density / MI for ensembles (post temp scaling),
        "t_m2_auroc": mean AUROC using entropy / PE for ensembles (post temp scaling),
        "t_m2_auprc": mean AUPRC using entropy / PE for ensembles (post temp scaling)
    },
    "std": {
        "accuracy": std error accuracy,
        "ece": std error ECE,
        "m1_auroc": std error AUROC using log density / MI for ensembles,
        "m1_auprc": std error AUPRC using log density / MI for ensembles,
        "m2_auroc": std error AUROC using entropy / PE for ensembles,
        "m2_auprc": std error AUPRC using entropy / PE for ensembles,
        "t_ece": std error ECE (post temp scaling),
        "t_m1_auroc": std error AUROC using log density / MI for ensembles (post temp scaling),
        "t_m1_auprc": std error AUPRC using log density / MI for ensembles (post temp scaling),
        "t_m2_auroc": std error AUROC using entropy / PE for ensembles (post temp scaling),
        "t_m2_auprc": std error AUPRC using entropy / PE for ensembles (post temp scaling)
    },
    "values": {
        "accuracy": accuracy list,
        "ece": ece list,
        "m1_auroc": AUROC list using log density / MI for ensembles,
        "m2_auroc": AUROC list using entropy / PE for ensembles,
        "t_ece": ece list (post temp scaling),
        "t_m1_auroc": AUROC list using log density / MI for ensembles (post temp scaling),
        "t_m1_auprc": AUPRC list using log density / MI for ensembles (post temp scaling),
        "t_m2_auroc": AUROC list using entropy / PE for ensembles (post temp scaling),
        "t_m2_auprc": AUPRC list using entropy / PE for ensembles (post temp scaling)
    },
    "info": {dictionary of args}
}

Results

Dirty-MNIST

To visualise DDU's performance on Dirty-MNIST (i.e., Fig. 1 of the paper), use fig_1_plot.ipynb. The notebook requires a pretrained LeNet, VGG-16 and ResNet-18 with spectral normalization trained on Dirty-MNIST and visualises the softmax entropy and feature density for Dirty-MNIST (iD) samples vs Fashion-MNIST (OoD) samples. The notebook also visualises the softmax entropies of MNIST vs Ambiguous-MNIST samples for the ResNet-18+SN model (Fig. 2 of the paper). The following figure shows the output of the notebook for the LeNet, VGG-16 and ResNet18+SN model we trained on Dirty-MNIST.

CIFAR-10 vs SVHN

The following table presents results for a Wide-ResNet-28-10 architecture trained on CIFAR-10 with SVHN as the OoD dataset. For the full set of results, refer to the paper.

Method Aleatoric Uncertainty Epistemic Uncertainty Test Accuracy Test ECE AUROC
Softmax Softmax Entropy Softmax Entropy 95.98+-0.02 0.85+-0.02 94.44+-0.43
Energy-based Softmax Entropy Softmax Density 95.98+-0.02 0.85+-0.02 94.56+-0.51
5-Ensemble Predictive Entropy Predictive Entropy 96.59+-0.02 0.76+-0.03 97.73+-0.31
DDU (ours) Softmax Entropy GMM Density 95.97+-0.03 0.85+-0.04 98.09+-0.10

Active Learning

To run active learning experiments, use active_learning_script.py. You can run active learning experiments on both MNIST as well as Dirty-MNIST. When running with Dirty-MNIST, you will need to provide a pretrained model on Dirty-MNIST to distinguish between clean MNIST and Ambiguous-MNIST samples. The following are the main command line arguments for active_learning_script.py.

--seed: seed used for initializing the first model (later experimental runs will have seeds incremented by 1)
--model: model architecture to train (resnet18)
-ambiguous: whether to use ambiguous MNIST during training. If this is set to True, the models will be trained on Dirty-MNIST, otherwise they will train on MNIST.
--dataset-root: /path/to/amnist_labels.pt and amnist_samples.pt/
--trained-model: model architecture of pretrained model to distinguish clean and ambiguous MNIST samples
-tsn: if pretrained model has been trained using spectral normalization
--tcoeff: coefficient of spectral normalization used on pretrained model
-tmod: if pretrained model has been trained using architectural modifications (leaky ReLU and average pooling on skip connections)
--saved-model-path: /path/to/saved/pretrained/model/
--saved-model-name: name of the saved pretrained model file
--threshold: Threshold of softmax entropy to decide if a sample is ambiguous (samples having higher softmax entropy than threshold will be considered ambiguous)
--subsample: number of clean MNIST samples to use to subsample clean MNIST
-sn: whether to use spectral normalization during training
--coeff: coefficient of spectral normalization during training
-mod: whether to use architectural modifications (leaky ReLU and average pooling on skip connections) during training
--al-type: type of active learning acquisition model (softmax/ensemble/gmm)
-mi: whether to use mutual information for ensemble al-type
--num-initial-samples: number of initial samples in the training set
--max-training-samples: maximum number of training samples
--acquisition-batch-size: batch size for each acquisition step

As an example, to run the active learning experiment on MNIST using the DDU method, use:

python active_learning_script.py \
       --seed 1 \
       --model resnet18 \
       -sn -mod \
       --al-type gmm

Similarly, to run the active learning experiment on Dirty-MNIST using the DDU baseline, with a pretrained ResNet-18 with SN to distinguish clean and ambiguous MNIST samples, use the following:

python active_learning_script.py \
       --seed 1 \
       --model resnet18 \
       -sn -mod \
       -ambiguous \
       --dataset-root /home/user/amnist/ \
       --trained-model resnet18 \
       -tsn \
       --saved-model-path /path/to/pretrained/model \
       --saved-model-name resnet18_sn_3.0_1_350.model \
       --threshold 1.0 \
       --subsample 1000 \
       --al-type gmm

Results

The active learning script stores all results in json files. The MNIST test set accuracy is stored in a json file with the following structure:

{
    "experiment run": list of MNIST test set accuracies one per acquisition step
}

When using ambiguous samples in the pool set, the script also stores the fraction of ambiguous samples acquired in each step in the following json:

{
    "experiment run": list of fractions of ambiguous samples in the acquired training set
}

Visualisation

To visualise results from the above json files, use the al_plot.ipynb notebook. The following diagram shows the performance of different baselines (softmax, ensemble PE, ensemble MI and DDU) on MNIST and Dirty-MNIST.

Questions

For any questions, please feel free to raise an issue or email us directly. Our emails can be found on the paper.

Owner
Jishnu Mukhoti
Graduate Student in Computer Science
Jishnu Mukhoti
COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models

COVID-ViT COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models This code is to response to te MIA-COV19 compe

17 Dec 30, 2022
Curved Projection Reformation

Description Assuming that we already know the image of the centerline, we want the lumen to be displayed on a plane, which requires curved projection

夜听残荷 5 Sep 11, 2022
Deep Multimodal Neural Architecture Search

MMNas: Deep Multimodal Neural Architecture Search This repository corresponds to the PyTorch implementation of the MMnas for visual question answering

Vision and Language Group@ MIL 23 Dec 21, 2022
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.

Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi

Ibrahim Sobh 62 Dec 25, 2022
Object detection on multiple datasets with an automatically learned unified label space.

Simple multi-dataset detection An object detector trained on multiple large-scale datasets with a unified label space; Winning solution of E

Xingyi Zhou 407 Dec 30, 2022
Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Octavio Arriaga 5.3k Dec 30, 2022
Auditing Black-Box Prediction Models for Data Minimization Compliance

Data-Minimization-Auditor An auditing tool for model-instability based data minimization that is introduced in "Auditing Black-Box Prediction Models f

Bashir Rastegarpanah 2 Mar 24, 2022
PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

StructDepth PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimat

SJTU-ViSYS 112 Nov 28, 2022
GLM (General Language Model)

GLM GLM is a General Language Model pretrained with an autoregressive blank-filling objective and can be finetuned on various natural language underst

THUDM 421 Jan 04, 2023
Dynamic Environments with Deformable Objects (DEDO)

DEDO - Dynamic Environments with Deformable Objects DEDO is a lightweight and customizable suite of environments with deformable objects. It is aimed

Rika 32 Dec 22, 2022
Clockwork Convnets for Video Semantic Segmentation

Clockwork Convnets for Video Semantic Segmentation This is the reference implementation of arxiv:1608.03609: Clockwork Convnets for Video Semantic Seg

Evan Shelhamer 141 Nov 21, 2022
Object Database for Super Mario Galaxy 1/2.

Super Mario Galaxy Object Database Welcome to the public object database for Super Mario Galaxy and Super Mario Galaxy 2. Here, we document all object

Aurum 9 Dec 04, 2022
Cross-lingual Transfer for Speech Processing using Acoustic Language Similarity

Cross-lingual Transfer for Speech Processing using Acoustic Language Similarity Indic TTS Samples can be found at https://peter-yh-wu.github.io/cross-

Peter Wu 1 Nov 12, 2022
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 42 Dec 09, 2022
Continual reinforcement learning baselines: experiment specifications, implementation of existing methods, and common metrics. Easily extensible to new methods.

Continual Reinforcement Learning This repository provides a simple way to run continual reinforcement learning experiments in PyTorch, including evalu

55 Dec 24, 2022
A Broader Picture of Random-walk Based Graph Embedding

Random-walk Embedding Framework This repository is a reference implementation of the random-walk embedding framework as described in the paper: A Broa

Zexi Huang 23 Dec 13, 2022
Torch implementation of "Enhanced Deep Residual Networks for Single Image Super-Resolution"

NTIRE2017 Super-resolution Challenge: SNU_CVLab Introduction This is our project repository for CVPR 2017 Workshop (2nd NTIRE). We, Team SNU_CVLab, (B

Bee Lim 625 Dec 30, 2022
FastReID is a research platform that implements state-of-the-art re-identification algorithms.

FastReID is a research platform that implements state-of-the-art re-identification algorithms.

JDAI-CV 2.8k Jan 07, 2023
Learning to Prompt for Continual Learning

Learning to Prompt for Continual Learning (L2P) Official Jax Implementation L2P is a novel continual learning technique which learns to dynamically pr

Google Research 207 Jan 06, 2023
A general and strong 3D object detection codebase that supports more methods, datasets and tools (debugging, recording and analysis).

ALLINONE-Det ALLINONE-Det is a general and strong 3D object detection codebase built on OpenPCDet, which supports more methods, datasets and tools (de

Michael.CV 5 Nov 03, 2022