Temporal Segment Networks (TSN) in PyTorch

Overview

TSN-Pytorch

We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation for TSN as well as other STOA frameworks for various tasks. The lessons we learned in this repo are incorporated into MMAction to make it bettter. We highly recommend you switch to it. This repo will remain here for historical references.

Note: always use git clone --recursive https://github.com/yjxiong/tsn-pytorch to clone this project. Otherwise you will not be able to use the inception series CNN archs.

This is a reimplementation of temporal segment networks (TSN) in PyTorch. All settings are kept identical to the original caffe implementation.

For optical flow extraction and video list generation, you still need to use the original TSN codebase.

Training

To train a new model, use the main.py script.

The command to reproduce the original TSN experiments of RGB modality on UCF101 can be

python main.py ucf101 RGB <ucf101_rgb_train_list> <ucf101_rgb_val_list> \
   --arch BNInception --num_segments 3 \
   --gd 20 --lr 0.001 --lr_steps 30 60 --epochs 80 \
   -b 128 -j 8 --dropout 0.8 \
   --snapshot_pref ucf101_bninception_ 

For flow models:

python main.py ucf101 Flow <ucf101_flow_train_list> <ucf101_flow_val_list> \
   --arch BNInception --num_segments 3 \
   --gd 20 --lr 0.001 --lr_steps 190 300 --epochs 340 \
   -b 128 -j 8 --dropout 0.7 \
   --snapshot_pref ucf101_bninception_ --flow_pref flow_  

For RGB-diff models:

python main.py ucf101 RGBDiff <ucf101_rgb_train_list> <ucf101_rgb_val_list> \
   --arch BNInception --num_segments 7 \
   --gd 40 --lr 0.001 --lr_steps 80 160 --epochs 180 \
   -b 128 -j 8 --dropout 0.8 \
   --snapshot_pref ucf101_bninception_ 

Testing

After training, there will checkpoints saved by pytorch, for example ucf101_bninception_rgb_checkpoint.pth.

Use the following command to test its performance in the standard TSN testing protocol:

python test_models.py ucf101 RGB <ucf101_rgb_val_list> ucf101_bninception_rgb_checkpoint.pth \
   --arch BNInception --save_scores <score_file_name>

Or for flow models:

python test_models.py ucf101 Flow <ucf101_rgb_val_list> ucf101_bninception_flow_checkpoint.pth \
   --arch BNInception --save_scores <score_file_name> --flow_pref flow_
Owner
Young and simple. [email protected] -> Amazon Rekognition. We are hiring summer interns for 20
Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations. [2021]

Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations This repo contains the Pytorch implementation of our paper: Revisit

Wouter Van Gansbeke 80 Nov 20, 2022
Yet another video caption

Yet another video caption

Fan Zhimin 5 May 26, 2022
🔥 Cogitare - A Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python

Cogitare is a Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python. A friendly interface for beginners and a powerful too

Cogitare - Modern and Easy Deep Learning with Python 76 Sep 30, 2022
Reinforcement Learning via Supervised Learning

Reinforcement Learning via Supervised Learning Installation Run pip install -e . in an environment with Python = 3.7.0, 3.9. The code depends on MuJ

Scott Emmons 49 Nov 28, 2022
Unofficial pytorch implementation for Self-critical Sequence Training for Image Captioning. and others.

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 906 Jan 03, 2023
DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe.

DeepLab Introduction DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe. It combines densely-compute

Ali 234 Nov 14, 2022
PyTorch implementation for NED. It can be used to manipulate the facial emotions of actors in videos based on emotion labels or reference styles.

Neural Emotion Director (NED) - Official Pytorch Implementation Example video of facial emotion manipulation while retaining the original mouth motion

Foivos Paraperas 89 Dec 23, 2022
Paddle Graph Learning (PGL) is an efficient and flexible graph learning framework based on PaddlePaddle

DOC | Quick Start | 中文 Breaking News !! 🔥 🔥 🔥 OGB-LSC KDD CUP 2021 winners announced!! (2021.06.17) Super excited to announce our PGL team won TWO

1.5k Jan 06, 2023
Self-attentive task GAN for space domain awareness data augmentation.

SATGAN TODO: update the article URL once published. Article about this implemention The self-attentive task generative adversarial network (SATGAN) le

Nathan 2 Mar 24, 2022
MILK: Machine Learning Toolkit

MILK: MACHINE LEARNING TOOLKIT Machine Learning in Python Milk is a machine learning toolkit in Python. Its focus is on supervised classification with

Luis Pedro Coelho 610 Dec 14, 2022
BERTMap: A BERT-Based Ontology Alignment System

BERTMap: A BERT-based Ontology Alignment System Important Notices The relevant paper was accepted in AAAI-2022. Arxiv version is available at: https:/

KRR 36 Dec 24, 2022
MakeItTalk: Speaker-Aware Talking-Head Animation

MakeItTalk: Speaker-Aware Talking-Head Animation This is the code repository implementing the paper: MakeItTalk: Speaker-Aware Talking-Head Animation

Adobe Research 285 Jan 08, 2023
Preparation material for Dropbox interviews

Dropbox-Onsite-Interviews A guide for the Dropbox onsite interview! The Dropbox interview question bank is very small. The bank has been in a Chinese

386 Dec 31, 2022
🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

Realcat 270 Jan 07, 2023
Check out the StyleGAN repo and place it in the same directory hierarchy as the present repo

Variational Model Inversion Attacks Kuan-Chieh Wang, Yan Fu, Ke Li, Ashish Khisti, Richard Zemel, Alireza Makhzani Most commands are in run_scripts. W

Jackson Wang 15 Dec 26, 2022
[CVPR 2019 Oral] Multi-Channel Attention Selection GAN with Cascaded Semantic Guidance for Cross-View Image Translation

SelectionGAN for Guided Image-to-Image Translation CVPR Paper | Extended Paper | Guided-I2I-Translation-Papers Citation If you use this code for your

Hao Tang 424 Dec 02, 2022
Data cleaning, missing value handle, EDA use in this project

Lending Club Case Study Project Brief Solving this assignment will give you an idea about how real business problems are solved using EDA. In this cas

Dhruvil Sheth 1 Jan 05, 2022
Asymmetric Bilateral Motion Estimation for Video Frame Interpolation, ICCV2021

ABME (ICCV2021) Junheum Park, Chul Lee, and Chang-Su Kim Official PyTorch Code for "Asymmetric Bilateral Motion Estimation for Video Frame Interpolati

Junheum Park 86 Dec 28, 2022
A CV toolkit for my papers.

PyTorch-Encoding created by Hang Zhang Documentation Please visit the Docs for detail instructions of installation and usage. Please visit the link to

Hang Zhang 2k Jan 04, 2023
An implementation for the loss function proposed in Decoupled Contrastive Loss paper.

Decoupled-Contrastive-Learning This repository is an implementation for the loss function proposed in Decoupled Contrastive Loss paper. Requirements P

Ramin Nakhli 71 Dec 04, 2022