Reinforcement Learning via Supervised Learning

Related tags

Deep Learningrvs
Overview

CircleCI codecov

Reinforcement Learning via Supervised Learning

Installation

Run

pip install -e .

in an environment with Python >= 3.7.0, <3.9.

The code depends on MuJoCo 2.1.0 (for mujoco-py) and MuJoCo 2.1.1 (for dm-control). Here are instructions for installing MuJoCo 2.1.0 and instructions for installing MuJoCo 2.1.1.

If you use the provided Dockerfile, it will automatically handle the MuJoCo dependencies for you. For example:

docker build -t rvs:latest .
docker run -it --rm -v $(pwd):/rvs rvs:latest bash
cd rvs
pip install -e .

Reproducing Experiments

The experiments directory contains a launch script for each environment suite. For example, to reproduce the RvS-R results in D4RL Gym locomotion, run

bash experiments/launch_gym_rvs_r.sh

Each launch script corresponds to a configuration file in experiments/config which serves as a reference for the hyperparameters associated with each experiment.

Adding New Environments

To run RvS on an environment of your own, you need to create a suitable dataset class. For example, in src/rvs/dataset.py, we have a dataset class for the GCSL environments, a dataset class for RvS-R in D4RL, and a dataset class for RvS-G in D4RL. In particular, the D4RLRvSGDataModule allows for conditioning on arbitrary dimensions of the goal state using the goal_columns attribute; for AntMaze, we set goal_columns to (0, 1) to condition only on the x and y coordinates of the goal state.

Baseline Numbers

We replicated CQL using this codebase, which was recommended to us by the CQL authors. All hyperparameters and logs from our replication runs can be viewed at our CQL-R Weights & Biases project.

We replicated Decision Transformer using our fork of the author's codebase, which we customized to add AntMaze. All hyperparameters and logs from our replication runs can be viewed at our DT Weights & Biases project.

Citing RvS

To cite RvS, you can use the following BibTeX entry:

@misc{emmons2021rvs,
      title={RvS: What is Essential for Offline RL via Supervised Learning?}, 
      author={Scott Emmons and Benjamin Eysenbach and Ilya Kostrikov and Sergey Levine},
      year={2021},
      eprint={2112.10751},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
Owner
Scott Emmons
PhD student at UC Berkeley's Center for Human-Compatible Artificial Intelligence
Scott Emmons
Pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks."

alpha-GAN Unofficial pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks." arXi

Victor Shepardson 78 Dec 08, 2022
TakeInfoatNistforICS - Take Information in NIST NVD for ICS

Take Information in NIST NVD for ICS This project developed with Python. When yo

5 Sep 05, 2022
The devkit of the nuScenes dataset.

nuScenes devkit Welcome to the devkit of the nuScenes and nuImages datasets. Overview Changelog Devkit setup nuImages nuImages setup Getting started w

Motional 1.6k Jan 05, 2023
A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs.

PYGON A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs. Installation This code requires to install and run the graph

Yoram Louzoun's Lab 0 Jun 25, 2021
PyTorch framework for Deep Learning research and development.

Accelerated DL & RL PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentati

Catalyst-Team 29 Jul 13, 2022
PyTorch implementation of CVPR'18 - Perturbative Neural Networks

This is an attempt to reproduce results in Perturbative Neural Networks paper. See original repo for details.

Michael Klachko 57 May 14, 2021
Code release for paper: The Boombox: Visual Reconstruction from Acoustic Vibrations

The Boombox: Visual Reconstruction from Acoustic Vibrations Boyuan Chen, Mia Chiquier, Hod Lipson, Carl Vondrick Columbia University Project Website |

Boyuan Chen 12 Nov 30, 2022
Training a deep learning model on the noisy CIFAR dataset

Training-a-deep-learning-model-on-the-noisy-CIFAR-dataset This repository contai

1 Jun 14, 2022
Point Cloud Registration Network

PCRNet: Point Cloud Registration Network using PointNet Encoding Source Code Author: Vinit Sarode and Xueqian Li Paper | Website | Video | Pytorch Imp

ViNiT SaRoDe 59 Nov 19, 2022
Security evaluation module with onnx, pytorch, and SecML.

🚀 🐼 🔥 PandaVision Integrate and automate security evaluations with onnx, pytorch, and SecML! Installation Starting the server without Docker If you

Maura Pintor 11 Apr 12, 2022
📚 Papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks.

papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks. Papermill lets you: parameterize notebooks execute notebooks This

nteract 5.1k Jan 03, 2023
Adversarial examples to the new ConvNeXt architecture

Adversarial examples to the new ConvNeXt architecture To get adversarial examples to the ConvNeXt architecture, run the Colab: https://github.com/stan

Stanislav Fort 19 Sep 18, 2022
Trading environnement for RL agents, backtesting and training.

TradzQAI Trading environnement for RL agents, backtesting and training. Live session with coinbasepro-python is finaly arrived ! Available sessions: L

Tony Denion 164 Oct 30, 2022
Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

DTU Acoustic Technology Group 11 Dec 17, 2022
InsCLR: Improving Instance Retrieval with Self-Supervision

InsCLR: Improving Instance Retrieval with Self-Supervision This is an official PyTorch implementation of the InsCLR paper. Download Dataset Dataset Im

Zelu Deng 25 Aug 30, 2022
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici

23 Nov 11, 2022
A Pytorch implementation of CVPR 2021 paper "RSG: A Simple but Effective Module for Learning Imbalanced Datasets"

RSG: A Simple but Effective Module for Learning Imbalanced Datasets (CVPR 2021) A Pytorch implementation of our CVPR 2021 paper "RSG: A Simple but Eff

120 Dec 12, 2022
PyTorch Implementation for Deep Metric Learning Pipelines

Easily Extendable Basic Deep Metric Learning Pipeline Karsten Roth ([email 

Karsten Roth 543 Jan 04, 2023
Code for "Discovering Non-monotonic Autoregressive Orderings with Variational Inference" (paper and code updated from ICLR 2021)

Discovering Non-monotonic Autoregressive Orderings with Variational Inference Description This package contains the source code implementation of the

Xuanlin (Simon) Li 10 Dec 29, 2022
PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features

PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features Overview This repository is the Pytorch implementation of PRIN/SPRIN: On Extracting P

Yang You 17 Mar 02, 2022