A Pytorch implementation of CVPR 2021 paper "RSG: A Simple but Effective Module for Learning Imbalanced Datasets"

Related tags

Deep LearningRSG
Overview

RSG: A Simple but Effective Module for Learning Imbalanced Datasets (CVPR 2021)

A Pytorch implementation of our CVPR 2021 paper "RSG: A Simple but Effective Module for Learning Imbalanced Datasets". RSG (Rare-class Sample Generator) is a flexible module that can generate rare-class samples during training and can be combined with any backbone network. RSG is only used in the training phase, so it will not bring additional burdens to the backbone network in the testing phase.

How to use RSG in your own networks

  1. Initialize RSG module:

    from RSG import *
    
    # n_center: The number of centers, e.g., 15.
    # feature_maps_shape: The shape of input feature maps (channel, width, height), e.g., [32, 16, 16].
    # num_classes: The number of classes, e.g., 10.
    # contrastive_module_dim: The dimention of the contrastive module, e.g., 256.
    # head_class_lists: The index of head classes, e.g., [0, 1, 2].
    # transfer_strength: Transfer strength, e.g., 1.0.
    # epoch_thresh: The epoch index when rare-class samples are generated: e.g., 159.
    
    self.RSG = RSG(n_center = 15, feature_maps_shape = [32, 16, 16], num_classes=10, contrastive_module_dim = 256, head_class_lists = [0, 1, 2], transfer_strength = 1.0, epoch_thresh = 159)
    
    
  2. Use RSG in the forward pass during training:

    out = self.layer2(out)
    
    # feature_maps: The input feature maps.
    # head_class_lists: The index of head classes.
    # target: The label of samples.
    # epoch: The current index of epoch.
    
    if phase_train == True:
      out, cesc_total, loss_mv_total, combine_target = self.RSG.forward(feature_maps = out, head_class_lists = [0, 1, 2], target = target, epoch = epoch)
     
    out = self.layer3(out) 
    

The two loss terms, namely ''cesc_total'' and ''loss_mv_total'', will be returned and combined with cross-entropy loss for backpropagation. More examples and details can be found in the models in the directory ''Imbalanced_Classification/models''.

How to train

Some examples:

Go into the "Imbalanced_Classification" directory.

  1. To reimplement the result of ResNet-32 on long-tailed CIFAR-10 ($\rho$ = 100) with RSG and LDAM-DRW:

    Export CUDA_VISIBLE_DEVICES=0,1
    python cifar_train.py --imb_type exp --imb_factor 0.01 --loss_type LDAM --train_rule DRW
    
  2. To reimplement the result of ResNet-32 on step CIFAR-10 ($\rho$ = 50) with RSG and Focal loss:

    Export CUDA_VISIBLE_DEVICES=0,1
    python cifar_train.py --imb_type step --imb_factor 0.02 --loss_type Focal --train_rule None
    
  3. To run experiments on iNaturalist 2018, Places-LT, or ImageNet-LT:

    Firstly, please prepare datasets and their corresponding list files. For the convenience, we provide the list files in Google Drive and Baidu Disk.

    Google Drive Baidu Disk
    download download (code: q3dk)

    To train the model:

    python inaturalist_train.py
    

    or

    python places_train.py
    

    or

    python imagenet_lt_train.py
    

    As for Places-LT or ImageNet-LT, the model is trained on the training set, and the best model on the validation set will be saved for testing. The "places_test.py" and 'imagenet_lt_test.py' are used for testing.

Citation

@inproceedings{Jianfeng2021RSG,
  title = {RSG: A Simple but Effective Module for Learning Imbalanced Datasets},
  author = {Jianfeng Wang and Thomas Lukasiewicz and Xiaolin Hu and Jianfei Cai and Zhenghua Xu},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2021}
}
Puzzle-CAM: Improved localization via matching partial and full features.

Puzzle-CAM The official implementation of "Puzzle-CAM: Improved localization via matching partial and full features".

Sanghyun Jo 150 Nov 14, 2022
An experimentation and research platform to investigate the interaction of automated agents in an abstract simulated network environments.

CyberBattleSim April 8th, 2021: See the announcement on the Microsoft Security Blog. CyberBattleSim is an experimentation research platform to investi

Microsoft 1.5k Dec 25, 2022
Background-Click Supervision for Temporal Action Localization

Background-Click Supervision for Temporal Action Localization This repository is the official implementation of BackTAL. In this work, we study the te

LeYang 221 Oct 09, 2022
Pytorch implementation of SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation

SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation Efficient Self-Ensemble Framework for Semantic Segmentation by Walid Bousselham

61 Dec 26, 2022
An implementation of the efficient attention module.

Efficient Attention An implementation of the efficient attention module. Description Efficient attention is an attention mechanism that substantially

Shen Zhuoran 194 Dec 15, 2022
OoD Minimum Anomaly Score GAN - Code for the Paper 'OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary'

OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary Out-of-Distribution Minimum Anomaly Score GAN (OMASGAN) C

- 8 Sep 27, 2022
The story of Chicken for Club Bing

Chicken Story tl;dr: The time when Microsoft banned my entire country for cheating at Club Bing. (A lot of the details are from memory so I've recreat

Eyal 142 May 16, 2022
Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks

Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks Stable Neural ODE with Lyapunov-Stable Equilibrium

Kang Qiyu 8 Dec 12, 2022
Dynamic View Synthesis from Dynamic Monocular Video

Dynamic View Synthesis from Dynamic Monocular Video Project Website | Video | Paper Dynamic View Synthesis from Dynamic Monocular Video Chen Gao, Ayus

Chen Gao 139 Dec 28, 2022
A series of convenience functions to make basic image processing operations such as translation, rotation, resizing, skeletonization, and displaying Matplotlib images easier with OpenCV and Python.

imutils A series of convenience functions to make basic image processing functions such as translation, rotation, resizing, skeletonization, and displ

Adrian Rosebrock 4.3k Jan 08, 2023
A Real-World Benchmark for Reinforcement Learning based Recommender System

RL4RS: A Real-World Benchmark for Reinforcement Learning based Recommender System RL4RS is a real-world deep reinforcement learning recommender system

121 Dec 01, 2022
A framework for GPU based high-performance medical image processing and visualization

FAST is an open-source cross-platform framework with the main goal of making it easier to do high-performance processing and visualization of medical images on heterogeneous systems utilizing both mu

Erik Smistad 315 Dec 30, 2022
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 123 Dec 23, 2022
Official implementation for the paper "Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection"

Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection PyTorch code release of the paper "Attentive Prototypes for Sour

Deepti Hegde 23 Oct 17, 2022
Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

47 Jun 30, 2022
CAST: Character labeling in Animation using Self-supervision by Tracking

CAST: Character labeling in Animation using Self-supervision by Tracking (Published as a conference paper at EuroGraphics 2022) Note: The CAST paper c

15 Nov 18, 2022
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Dec 31, 2022
ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D Data

ARKitScenes This repo accompanies the research paper, ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D

Apple 371 Jan 05, 2023
PyTorch implementation of federated learning framework based on the acceleration of global momentum

Federated Learning with Acceleration of Global Momentum PyTorch implementation of federated learning framework based on the acceleration of global mom

0 Dec 23, 2021
A small tool to joint picture including gif

README 做设计的时候遇到拼接长图的情况,但是发现没有什么好用的能拼接gif的工具。 于是自己写了个gif拼接小工具。 可以自动拼接gif、png和jpg等常见格式。 效果 从上至下 从下至上 从左至右 从右至左 使用 克隆仓库 git clone https://github.com/Dels

3 Dec 15, 2021