PyTorch implementation of our paper: Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition

Overview

Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition, arxiv

This is a PyTorch implementation of our paper.

1. Requirements

torch>=1.7.0; torchvision>=0.8.0; Visdom(optional)

data prepare: Database with the following folder structure:

│NTURGBD/
├──dataset_splits/
│  ├── @CS
│  │   ├── train.txt
                video name               total frames    label
│  │   │    ├──S001C001P001R001A001_rgb      103          0 
│  │   │    ├──S001C001P001R001A004_rgb      99           3 
│  │   │    ├──...... 
│  │   ├── valid.txt
│  ├── @CV
│  │   ├── train.txt
│  │   ├── valid.txt
├──Images/
│  │   ├── S001C002P001R001A002_rgb
│  │   │   ├──000000.jpg
│  │   │   ├──000001.jpg
│  │   │   ├──......
├──nturgb+d_depth_masked/
│  │   ├── S001C002P001R001A002
│  │   │   ├──MDepth-00000000.png
│  │   │   ├──MDepth-00000001.png
│  │   │   ├──......

It is important to note that due to the RGB video resolution in the NTU dataset is relatively high, so we are not directly to resize the image from the original resolution to 320x240, but first crop the object-centered ROI area (640x480), and then resize it to 320x240 for training and testing.

2. Methodology

We propose to decouple and recouple spatiotemporal representation for RGB-D-based motion recognition. The Figure in the first line illustrates the proposed multi-modal spatiotemporal representation learning framework. The RGB-D-based motion recognition can be described as spatiotemporal information decoupling modeling, compact representation recoupling learning, and cross-modal representation interactive learning. The Figure in the second line shows the process of decoupling and recoupling saptiotemporal representation of a unimodal data.

3. Train and Evaluate

All of our models are pre-trained on the 20BN Jester V1 dataset and the pretrained model can be download here. Before cross-modal representation interactive learning, we first separately perform unimodal representation learning on RGB and depth data modalities.

Unimodal Training

Take training an RGB model with 8 GPUs on the NTU-RGBD dataset as an example, some basic configuration:

common:
  dataset: NTU 
  batch_size: 6
  test_batch_size: 6
  num_workers: 6
  learning_rate: 0.01
  learning_rate_min: 0.00001
  momentum: 0.9
  weight_decay: 0.0003
  init_epochs: 0
  epochs: 100
  optim: SGD
  scheduler:
    name: cosin                     # Represent decayed learning rate with the cosine schedule
    warm_up_epochs: 3 
  loss:
    name: CE                        # cross entropy loss function
    labelsmooth: True
  MultiLoss: True                   # Enable multi-loss training strategy.
  loss_lamdb: [ 1, 0.5, 0.5, 0.5 ]  # The loss weight coefficient assigned for each sub-branch.
  distill: 1.                       # The loss weight coefficient assigned for distillation task.

model:
  Network: I3DWTrans                # I3DWTrans represent unimodal training, set FusionNet for multi-modal fusion training.
  sample_duration: 64               # Sampled frames in a video.
  sample_size: 224                  # The image is croped into 224x224.
  grad_clip: 5.
  SYNC_BN: 1                        # Utilize SyncBatchNorm.
  w: 10                             # Sliding window size.
  temper: 0.5                       # Distillation temperature setting.
  recoupling: True                  # Enable recoupling strategy during training.
  knn_attention: 0.7                # Hyperparameter used in k-NN attention: selecting Top-70% tokens.
  sharpness: True                   # Enable sharpness for each sub-branch's output.
  temp: [ 0.04, 0.07 ]              # Temperature parameter follows a cosine schedule from 0.04 to 0.07 during the training.
  frp: True                         # Enable FRP module.
  SEHeads: 1                        # Number of heads used in RCM module.
  N: 6                              # Number of Transformer blochs configured for each sub-branch.

dataset:
  type: M                           # M: RGB modality, K: Depth modality.
  flip: 0.5                         # Horizontal flip.
  rotated: 0.5                      # Horizontal rotation
  angle: (-10, 10)                  # Rotation angle
  Blur: False                       # Enable random blur operation for each video frame.
  resize: (320, 240)                # The input is spatially resized to 320x240 for NTU dataset.
  crop_size: 224                
  low_frames: 16                    # Number of frames sampled for small Transformer.       
  media_frames: 32                  # Number of frames sampled for medium Transformer.  
  high_frames: 48                   # Number of frames sampled for large Transformer.
bash run.sh tools/train.py config/NTU.yml 0,1,2,3,4,5,6,7 8

or

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --nproc_per_node=8 --master_port=1234 train.py --config config/NTU.yml --nprocs 8  

Cross-modal Representation Interactive Learning

Take training a fusion model with 8 GPUs on the NTU-RGBD dataset as an example.

bash run.sh tools/fusion.py config/NTU.yml 0,1,2,3,4,5,6,7 8

or

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --nproc_per_node=8 --master_port=1234 fusion.py --config config/NTU.yml --nprocs 8  

Evaluation

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 --master_port=1234 train.py --config config/NTU.yml --nprocs 1 --eval_only --resume /path/to/model_best.pth.tar 

4. Models Download

Dataset Modality Accuracy Download
NvGesture RGB 89.58 Google Drive
NvGesture Depth 90.62 Google Drive
NvGesture RGB-D 91.70 Google Drive
THU-READ RGB 81.25 Google Drive
THU-READ Depth 77.92 Google Drive
THU-READ RGB-D 87.04 Google Drive
NTU-RGBD(CS) RGB 90.3 Google Drive
NTU-RGBD(CS) Depth 92.7 Google Drive
NTU-RGBD(CS) RGB-D 94.2 Google Drive
NTU-RGBD(CV) RGB 95.4 Google Drive
NTU-RGBD(CV) Depth 96.2 Google Drive
NTU-RGBD(CV) RGB-D 97.3 Google Drive
IsoGD RGB 60.87 Google Drive
IsoGD Depth 60.17 Google Drive
IsoGD RGB-D 66.79 Google Drive

Citation

@inproceedings{zhou2021DRSR,
      title={Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition}, 
      author={Benjia Zhou and Pichao Wang and Jun Wan and Yanyan Liang and Fan Wang and Du Zhang and Zhen Lei and Hao Li and Rong Jin},
      journal={arXiv preprint arXiv:2112.09129},
      year={2021},
}

LICENSE

The code is released under the MIT license.

Copyright

Copyright (C) 2010-2021 Alibaba Group Holding Limited.

Owner
DamoCV
CV team of DAMO academy
DamoCV
Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition

Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition Official implementation of the Efficient Conforme

Maxime Burchi 145 Dec 30, 2022
source code for 'Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge' by A. Shah, K. Shanmugam, K. Ahuja

Source code for "Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge" Reference: Abhin Shah, Karthikeyan Shanmugam, Kartik Ahu

Abhin Shah 1 Jun 03, 2022
pytorch implementation of "Contrastive Multiview Coding", "Momentum Contrast for Unsupervised Visual Representation Learning", and "Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination"

Unofficial implementation: MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (Paper) InsDis: Unsupervised Feature Learning via N

Zhiqiang Shen 16 Nov 04, 2020
Finetune SSL models for MOS prediction

Finetune SSL models for MOS prediction This is code for our paper under review for ICASSP 2022: "Generalization Ability of MOS Prediction Networks" Er

Yamagishi and Echizen Laboratories, National Institute of Informatics 32 Nov 22, 2022
A implemetation of the LRCN in mxnet

A implemetation of the LRCN in mxnet ##Abstract LRCN is a combination of CNN and RNN ##Installation Download UCF101 dataset ./avi2jpg.sh to split the

44 Aug 25, 2022
Fashion Recommender System With Python

Fashion-Recommender-System Thr growing e-commerce industry presents us with a la

Omkar Gawade 2 Feb 02, 2022
QICK: Quantum Instrumentation Control Kit

QICK: Quantum Instrumentation Control Kit The QICK is a kit of firmware and software to use the Xilinx RFSoC to control quantum systems. It consists o

81 Dec 15, 2022
InvTorch: memory-efficient models with invertible functions

InvTorch: Memory-Efficient Invertible Functions This module extends the functionality of torch.utils.checkpoint.checkpoint to work with invertible fun

Modar M. Alfadly 12 May 12, 2022
Seq2seq - Sequence to Sequence Learning with Keras

Seq2seq Sequence to Sequence Learning with Keras Hi! You have just found Seq2Seq. Seq2Seq is a sequence to sequence learning add-on for the python dee

Fariz Rahman 3.1k Dec 18, 2022
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree

CatBoost 6.9k Jan 04, 2023
Point Cloud Registration Network

PCRNet: Point Cloud Registration Network using PointNet Encoding Source Code Author: Vinit Sarode and Xueqian Li Paper | Website | Video | Pytorch Imp

ViNiT SaRoDe 59 Nov 19, 2022
Custom Implementation of Non-Deep Networks

ParNet Custom Implementation of Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Official Repository https

Pritama Kumar Nayak 20 May 27, 2022
Repository for GNSS-based position estimation using a Deep Neural Network

Code repository accompanying our work on 'Improving GNSS Positioning using Neural Network-based Corrections'. In this paper, we present a Deep Neural

32 Dec 13, 2022
ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation

ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation This repository provides a PyTorch implementation of ADSPM. Requirements Pyth

24 Jul 24, 2022
unet for image segmentation

Implementation of deep learning framework -- Unet, using Keras The architecture was inspired by U-Net: Convolutional Networks for Biomedical Image Seg

zhixuhao 4.1k Dec 31, 2022
The official repo for CVPR2021——ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search.

ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search [paper] Introduction This is the official implementation of ViPNAS: Efficient V

Lumin 42 Sep 26, 2022
Image processing in Python

scikit-image: Image processing in Python Website (including documentation): https://scikit-image.org/ Mailing list: https://mail.python.org/mailman3/l

Image Processing Toolbox for SciPy 5.2k Dec 31, 2022
Fermi Problems: A New Reasoning Challenge for AI

Fermi Problems: A New Reasoning Challenge for AI Fermi Problems are questions whose answer is a number that can only be reasonably estimated as a prec

AI2 15 May 28, 2022
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
Pretrained models for Jax/Haiku; MobileNet, ResNet, VGG, Xception.

Pre-trained image classification models for Jax/Haiku Jax/Haiku Applications are deep learning models that are made available alongside pre-trained we

Alper Baris CELIK 14 Dec 20, 2022