Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis

Related tags

Deep LearningCRT
Overview

Readme File for "Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis" by Ham, Imai, and Janson. (2022)

All scripts were written and edited by Dae Woong Ham on 01/27/2022

Code Overview

Plotting previous empirical results (Fig 1, Fig 2)

  • "Section2_AMCE_plots/immigration_Fig1.R" produces Figure 1 AMCE plots based on original AMCE estimates
  • "Section2_AMCE_plots/gender_Fig2.R" produces Figure 2 AMCE plots based on original AMCE estimates

All simulation plots (Fig 3, 4, 5, 6, 7)

  • All simulations are plotted through "Simulations/all_simulation_plots.R" file
  • All simulation scripts are executed through "source/left_fig_simulation.sh" or "source/right_fig_simulation.sh"
  • "Simulations/Section4/Figure3_leftplot.R"/"Simulations/Section4/Figure3_rightplot.R" produces results of Fig 3 # 50 and 33 hours of computing time respectively
  • "Simulations/Appendix/Figure4_and_6_leftplot.R"/"Simulations/Section4/Figure4_and_6_rightplot.R" produces results of Fig 4 and 6 # 50 and 33 hours of computing time respectively
  • "Simulations/Appendix/Figure5_leftplot.R"/"Simulations/Section4/Figure5_rightplot.R" produces results of Fig 5 # 50 and 33 hours of computing time respectively
  • "Simulations/Appendix/Figure7.R" produces results of Fig 7 # less than 5 minutes of computing time on FAS computing cluster

Obtaining new p-values (Section 5 and Table 1)

  • All p-values in Section 5 are summarized and obtained in "Section5_ApplicationResults/pval_analysis.R"
  • "Section5_ApplicationResults/Immigration/main_analysis/obs_test_stat.R"/"Section5_ApplicationResults/Immigration/main_analysis/resampled_test_stats.R" produces observed and resampled test statistics to produce p-value in Table 1 row 1 column 1. # 30 minutes of total computing time
  • "Section5_ApplicationResults/Immigration/main_analysis/AMCE_pval.do" produces AMCE p-value in Table 1 row 1 column 2. #less than 5 seconds of total computing time
  • "Section5_ApplicationResults/Immigration/main_analysis/profile_order_effect.R"/"Section5_ApplicationResults/Immigration/main_analysis/profile_order_effect/resampled_test_stats.R" produces observed and resampled test statistics to produce p-value in Table 1 row 1 column 3. # 10 minutes of total computing time
  • "Section5_ApplicationResults/Immigration/main_analysis/carryover_effect_obs_test_stat.R"/"Section5_ApplicationResults/Immigration/main_analysis/carryover_effect_resampled_test_stats.R" produces observed and resampled test statistics to produce p-value in Table 1 row 1 column 4. # 30 minutes of total computing time
  • "Section5_ApplicationResults/Immigration/main_analysis/fatigue_effect_obs_test_stat.R"/"Section5_ApplicationResults/Immigration/main_analysis/fatigue_effect_resampled_test_stats.R" produces observed and resampled test statistics to produce p-value in Table 1 row 1 column 5. # 24 minutes of computing time
  • To obtain p-value for second row repeat above but for "Section5_ApplicationResults/Gender/..." # Approximate computation time is listed in the individual files
  • Each application also contains "../lasso_obs_test_stat.R"/"../lasso_resampled_test_stats.R" to produce supplementary main effect analysis in Section 5
  • "Section5_ApplicationResults/Immigration/with_ethnocentrism/" contains files to produce p-value when including ethnocentrism in Section 5.1
  • "Section5_ApplicationResults/gender/supplementary_analysis/" contains files to produce p-value when performing robustness analysis using second most significant interaction in Appendix
  • "Section5_ApplicationResults/gender/main_analysis/presidential_lasso_explore.R" contains script to find which interaction is strongest in Presidential dataset

Other folders

  • "data" folder contains all relevant datasets in both Immigration and gender conjoint examples and all the saved results of p-values in simulations and test statistics for Section 5
  • "Figures" folder contains all figures
  • "source" folder contains all helper and main functions to run above scripts (including data cleaning, obtaining test statistics, generating simulation datasets). In particular "source/hiernet_source.R" contains the main function to compute all HierNet test statistics in the paper.

Environment

  • R version 4.1.0
  • 200 cores for all scripts that required parallel computing
  • All parallel computations in this paper were run on the FASRC Cannon cluster supported by the FAS Division of Science Research Computing Group at Harvard University
Enhancing Knowledge Tracing via Adversarial Training

Enhancing Knowledge Tracing via Adversarial Training This repository contains source code for the paper "Enhancing Knowledge Tracing via Adversarial T

Xiaopeng Guo 14 Oct 24, 2022
The MATH Dataset

Measuring Mathematical Problem Solving With the MATH Dataset This is the repository for Measuring Mathematical Problem Solving With the MATH Dataset b

Dan Hendrycks 267 Dec 26, 2022
DeepRec is a recommendation engine based on TensorFlow.

DeepRec Introduction DeepRec is a recommendation engine based on TensorFlow 1.15, Intel-TensorFlow and NVIDIA-TensorFlow. Background Sparse model is a

Alibaba 676 Jan 03, 2023
List of all dependencies affected by node-ipc malicious commit

node-ipc-dependencies-list List of all dependencies affected by node-ipc malicious commit as of 17/3/2022 - 19/3/2022 (timestamp) Please improve upon

99 Oct 15, 2022
Official pytorch code for "APP: Anytime Progressive Pruning"

APP: Anytime Progressive Pruning Diganta Misra1,2,3, Bharat Runwal2,4, Tianlong Chen5, Zhangyang Wang5, Irina Rish1,3 1 Mila - Quebec AI Institute,2 L

Landskape AI 12 Nov 22, 2022
[CVPR 2020] Transform and Tell: Entity-Aware News Image Captioning

Transform and Tell: Entity-Aware News Image Captioning This repository contains the code to reproduce the results in our CVPR 2020 paper Transform and

Alasdair Tran 85 Dec 13, 2022
Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark

Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark Yong

19 Dec 17, 2022
Pytorch implementation of Value Iteration Networks (NIPS 2016 best paper)

VIN: Value Iteration Networks A quick thank you A few others have released amazing related work which helped inspire and improve my own implementation

Kent Sommer 297 Dec 26, 2022
QAT(quantize aware training) for classification with MQBench

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm.

This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm. It contains the code to reproduce the results presented in the original paper: https://arxiv.org/abs/2112.0

Saman Khamesian 6 Dec 13, 2022
Background Matting: The World is Your Green Screen

Background Matting: The World is Your Green Screen By Soumyadip Sengupta, Vivek Jayaram, Brian Curless, Steve Seitz, and Ira Kemelmacher-Shlizerman Th

Soumyadip Sengupta 4.6k Jan 04, 2023
Multi-objective gym environments for reinforcement learning.

MO-Gym: Multi-Objective Reinforcement Learning Environments Gym environments for multi-objective reinforcement learning (MORL). The environments follo

Lucas Alegre 74 Jan 03, 2023
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020

Google Research 3k Jan 01, 2023
Pytorch implementation of Integrating Tree Path in Transformer for Code Representation

This is an official Pytorch implementation of the approaches proposed in: Han Peng, Ge Li, Wenhan Wang, Yunfei Zhao, Zhi Jin “Integrating Tree Path in

Han Peng 16 Dec 23, 2022
Multi-Glimpse Network With Python

Multi-Glimpse Network Multi-Glimpse Network: A Robust and Efficient Classification Architecture based on Recurrent Downsampled Attention arXiv Require

9 May 10, 2022
This is a simple framework to make object detection dataset very quickly

FastAnnotation Table of contents General info Requirements Setup General info This is a simple framework to make object detection dataset very quickly

Serena Tetart 1 Jan 24, 2022
Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images

Keras-ICNet [paper] Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images. Training in progress! Requisites Python 3.6.3 K

Aitor Ruano 87 Dec 16, 2022
iNAS: Integral NAS for Device-Aware Salient Object Detection

iNAS: Integral NAS for Device-Aware Salient Object Detection Introduction Integral search design (jointly consider backbone/head structures, design/de

顾宇超 77 Dec 02, 2022
Codes for paper "KNAS: Green Neural Architecture Search"

KNAS Codes for paper "KNAS: Green Neural Architecture Search" KNAS is a green (energy-efficient) Neural Architecture Search (NAS) approach. It contain

90 Dec 22, 2022
Python Interview Questions

Python Interview Questions Clone the code to your computer. You need to understand the code in main.py and modify the content in if __name__ =='__main

ClassmateLin 575 Dec 28, 2022