This repo contains the code and data used in the paper "Wizard of Search Engine: Access to Information Through Conversations with Search Engines"

Overview

Wizard of Search Engine: Access to Information Through Conversations with Search Engines

by Pengjie Ren, Zhongkun Liu, Xiaomeng Song, Hongtao Tian, Zhumin Chen, Zhaochun Ren and Maarten de Rijke

@inproceedings{ren2021wizard,
title={Wizard of Search Engine: Access to Information Through Conversations with Search Engines},
author={Ren, Pengjie and Liu, Zhongkun and Song, Xiaomeng and Tian, Hongtao and Chen, Zhumin and Ren, Zhaochun and de Rijke, Maarten},
booktitle={Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval},
year={2021}
}

Paper summary

task
Task pipeline for conversational information seeking (CIS)
model
Model pipeline for conversational information seeking (CIS)

In this work, we make efforts to facilitate research on conversational information seeking (CIS) from three angles: (1) We formulate a pipeline for CIS with six sub-tasks: intent detection, keyphrase extraction, action prediction, query selection, passage selection, and response generation. (2) We release a benchmark dataset, called wizard of search engine(WISE), which allows for comprehensive and in-depth research on all aspects of CIS. (3) We design a neural architecture capable of training and evaluating both jointly and separately on the six sub-tasks, and devise a pre-train/fine-tune learning scheme, that can reduce the requirements of WISE in scale by making full use of available data.

Running experiments

Requirements

This code is written in PyTorch. Any version later than 1.6 is expected to work with the provided code. Please refer to the official website for an installation guide.

We recommend to use conda for installing the requirements. If you haven't installed conda yet, you can find instructions here. The steps for installing the requirements are:

  • Create a new environment

    conda create env -n WISE
    

    In the environment, a python version >3.6 should be used.

  • Activate the environment

    conda activate WISE
    
  • Install the requirements within the environment via pip:

    pip install -r requirements.txt
    

Datasets

We use WebQA, DuReader, KdConv and DuConv datasets for pretraining. You can get them from the provided links and put them in the corresponding folders in ./data/. For example, WebQA datasets should be put in ./data/WebQA, and DuReader datasets in ./data/Dureader and so on. We use the WISE dataset to fine-tune the model, and this dataset is available in ./data/WISE. Details about the WISE dataset can be found here.

Training

  • Run the following scripts to automatically process the pretraining datasets into the required format:
python ./Run.py --mode='data'
  • Run the following scripts sequentially:
python -m torch.distributed.launch --nproc_per_node=4 ./Run.py --mode='pretrain'
python -m torch.distributed.launch --nproc_per_node=4 ./Run.py --mode='finetune'

Note that you should select the appropriate pretrain models from the folder ./output/pretrained, and put them into ./output/pretrained_ready which is newly created by yourself before finetuning. The hyperparameters are set to the default values used in our experiments. To see an overview of all hyperparameters, please refer to ./Run.py.

Evaluating

  • Run the following scripts:
python -m torch.distributed.launch --nproc_per_node=4 ./Run.py --mode='infer-valid'
python -m torch.distributed.launch --nproc_per_node=4 ./Run.py --mode='eval-valid'
python -m torch.distributed.launch --nproc_per_node=4 ./Run.py --mode='infer-test'
python -m torch.distributed.launch --nproc_per_node=4 ./Run.py --mode='eval-test'
Show-attend-and-tell - TensorFlow Implementation of "Show, Attend and Tell"

Show, Attend and Tell Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attent

Yunjey Choi 902 Nov 29, 2022
Code for the paper "Implicit Representations of Meaning in Neural Language Models"

Implicit Representations of Meaning in Neural Language Models Preliminaries Create and set up a conda environment as follows: conda create -n state-pr

Belinda Li 39 Nov 03, 2022
Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration

Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration Project Page | Paper Yifan Peng*, Suyeon Choi*, Jongh

Stanford Computational Imaging Lab 19 Dec 11, 2022
An end-to-end machine learning web app to predict rugby scores (Pandas, SQLite, Keras, Flask, Docker)

Rugby score prediction An end-to-end machine learning web app to predict rugby scores Overview An demo project to provide a high-level overview of the

34 May 24, 2022
Global Filter Networks for Image Classification

Global Filter Networks for Image Classification Created by Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, Jie Zhou This repository contains PyTorch

Yongming Rao 273 Dec 26, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks Recent Update 2021.11.23: We release the source code of SAQ. Setup the environments Clone the re

Zhuang AI Group 30 Dec 19, 2022
Repo for CVPR2021 paper "QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information"

QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information by Masato Tamura, Hiroki Ohashi, and Tomoaki Yosh

105 Dec 23, 2022
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110.06922). Our implementations are built on top of MMdetection3D.

Wang, Yue 539 Jan 07, 2023
Open Source Differentiable Computer Vision Library for PyTorch

Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer

kornia 7.6k Jan 04, 2023
[MICCAI'20] AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes

AlignShift NEW: Code for our new MICCAI'21 paper "Asymmetric 3D Context Fusion for Universal Lesion Detection" will also be pushed to this repository

Medical 3D Vision 42 Jan 06, 2023
[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting

[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting [Paper] [Project Website] [Google Colab] We propose a method for converting a

Virginia Tech Vision and Learning Lab 6.2k Jan 01, 2023
The first public PyTorch implementation of Attentive Recurrent Comparators

arc-pytorch PyTorch implementation of Attentive Recurrent Comparators by Shyam et al. A blog explaining Attentive Recurrent Comparators Visualizing At

Sanyam Agarwal 150 Oct 14, 2022
PyKaldi GOP-DNN on Epa-DB

PyKaldi GOP-DNN on Epa-DB This repository has the tools to run a PyKaldi GOP-DNN algorithm on Epa-DB, a database of non-native English speech by Spani

18 Dec 14, 2022
Let Python optimize the best stop loss and take profits for your TradingView strategy.

TradingView Machine Learning TradeView is a free and open source Trading View bot written in Python. It is designed to support all major exchanges. It

Robert Roman 473 Jan 09, 2023
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported

Julius Kunze 26 Oct 05, 2022
Building Ellee — A GPT-3 and Computer Vision Powered Talking Robotic Teddy Bear With Human Level Conversation Intelligence

Using an object detection and facial recognition system built on MobileNetSSDV2 and Dlib and running on an NVIDIA Jetson Nano, a GPT-3 model, Google Speech Recognition, Amazon Polly and servo motors,

24 Oct 26, 2022
🔪 Elimination based Lightweight Neural Net with Pretrained Weights

ELimNet ELimNet: Eliminating Layers in a Neural Network Pretrained with Large Dataset for Downstream Task Removed top layers from pretrained Efficient

snoop2head 4 Jul 12, 2022
Human Action Controller - A human action controller running on different platforms.

Human Action Controller (HAC) Goal A human action controller running on different platforms. Fun Easy-to-use Accurate Anywhere Fun Examples Mouse Cont

27 Jul 20, 2022
Which Style Makes Me Attractive? Interpretable Control Discovery and Counterfactual Explanation on StyleGAN

Interpretable Control Exploration and Counterfactual Explanation (ICE) on StyleGAN Which Style Makes Me Attractive? Interpretable Control Discovery an

Bo Li 11 Dec 01, 2022
Implementation of "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement" by pytorch

This repository is used to suspend the results of our paper "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement"

ScorpioMiku 19 Sep 30, 2022