Learning Confidence for Out-of-Distribution Detection in Neural Networks

Overview

Learning Confidence Estimates for Neural Networks

This repository contains the code for the paper Learning Confidence for Out-of-Distribution Detection in Neural Networks. In this work, we demonstrate how to augment neural networks with a confidence estimation branch, which can be used to identify misclassified and out-of-distribution examples.

To learn confidence estimates during training, we provide the neural network with "hints" towards the correct output whenever it exhibits low confidence in its predictions. Hints are provided by pushing the prediction closer to the target distribution via interpolation, where the amount of interpolation proportional to the network's confidence that its prediction is correct. To discourage the network from always asking for free hints, a small penalty is applied whenever it is not confident. As a result, the network learns to only produce low confidence estimates when it is likely to make an incorrect prediction.

Bibtex:

@article{devries2018learning,
  title={Learning Confidence for Out-of-Distribution Detection in Neural Networks},
  author={DeVries, Terrance and Taylor, Graham W},
  journal={arXiv preprint arXiv:1802.04865},
  year={2018}
}

Results and Usage

We evalute our method on the task of out-of-distribution detection using three different neural network architectures: DenseNet, WideResNet, and VGG. CIFAR-10 and SVHN are used as the in-distribution datasets, while TinyImageNet, LSUN, iSUN, uniform noise, and Gaussian noise are used as the out-of-distribution datasets. Definitions of evaluation metrics can be found in the paper.

Dependencies

PyTorch v0.3.0
tqdm
visdom
seaborn
Pillow
scikit-learn

Training

Train a model with a confidence estimator with train.py. During training you can use visdom to see a histogram of confidence estimates from the test set. Training logs will be stored in the logs/ folder, while checkpoints are stored in the checkpoints/ folder.

Args Options Description
dataset cifar10,
svhn
Selects which dataset to train on.
model densenet,
wideresnet,
vgg13
Selects which model architecture to use.
batch_size [int] Number of samples per batch.
epochs [int] Number of epochs for training.
seed [int] Random seed.
learning_rate [float] Learning rate.
data_augmentation Train with standard data augmentation (random flipping and translation).
cutout [int] Indicates the patch size to use for Cutout. If 0, Cutout is not used.
budget [float] Controls how often the network can choose have low confidence in its prediction. Increasing the budget will bias the output towards low confidence predictions, while decreasing the budget will produce more high confidence predictions.
baseline Train the model without the confidence branch.

Use the following settings to replicate the experiments from the paper:

VGG13 on CIFAR-10

python train.py --dataset cifar10 --model vgg13 --budget 0.3 --data_augmentation --cutout 16

WideResNet on CIFAR-10

python train.py --dataset cifar10 --model wideresnet --budget 0.3 --data_augmentation --cutout 16

DenseNet on CIFAR-10

python train.py --dataset cifar10 --model densenet --budget 0.3 --epochs 300 --batch_size 64 --data_augmentation --cutout 16

VGG13 on SVHN

python train.py --dataset svhn --model vgg13 --budget 0.3 --learning_rate 0.01 --epochs 160 --data_augmentation --cutout 20

WideResNet on SVHN

python train.py --dataset svhn --model wideresnet --budget 0.3 --learning_rate 0.01 --epochs 160 --data_augmentation --cutout 20

DenseNet on SVHN

python train.py --dataset svhn --model densenet --budget 0.3 --learning_rate 0.01 --epochs 300 --batch_size 64  --data_augmentation --cutout 20

Out-of-distribution detection

Evaluate a trained model with out_of_distribution_detection.py. Before running this you will need to download the out-of-distribution datasets from Shiyu Liang's ODIN github repo and modify the data paths in the file according to where you saved the datasets.

Args Options Description
ind_dataset cifar10,
svhn
Indicates which dataset to use as in-distribution. Should be the same one that the model was trained on.
ood_dataset tinyImageNet_crop,
tinyImageNet_resize,
LSUN_crop,
LSUN_resize,
iSUN,
Uniform,
Gaussian,
all
Indicates which dataset to use as the out-of-distribution datset.
model densenet,
wideresnet,
vgg13
Selects which model architecture to use. Should be the same one that the model was trained on.
process baseline,
ODIN,
confidence,
confidence_scaling
Indicates which method to use for out-of-distribution detection. Baseline uses the maximum softmax probability. ODIN applies temperature scaling and input pre-processing to the baseline method. Confidence uses the learned confidence estimates. Confidence scaling applies input pre-processing to the confidence estimates.
batch_size [int] Number of samples per batch.
T [float] Temperature to use for temperature scaling.
epsilon [float] Noise magnitude to use for input pre-processing.
checkpoint [str] Filename of trained model checkpoint. Assumes the file is in the checkpoints/ folder. A .pt extension is also automatically added to the filename.
validation Use this flag for fine-tuning T and epsilon. If flag is on, the script will only evaluate on the first 1000 samples in the out-of-distribution dataset. If flag is not used, the remaining samples are used for evaluation. Based on validation procedure from ODIN.

Example commands for running the out-of-distribution detection script:

Baseline

python out_of_distribution_detection.py --ind_dataset svhn --ood_dataset all --model vgg13 --process baseline --checkpoint svhn_vgg13_budget_0.0_seed_0

ODIN

python out_of_distribution_detection.py --ind_dataset cifar10 --ood_dataset tinyImageNet_resize --model densenet --process ODIN --T 1000 --epsilon 0.001 --checkpoint cifar10_densenet_budget_0.0_seed_0

Confidence

python out_of_distribution_detection.py --ind_dataset cifar10 --ood_dataset LSUN_crop --model vgg13 --process confidence --checkpoint cifar10_vgg13_budget_0.3_seed_0

Confidence scaling

python out_of_distribution_detection.py --ind_dataset svhn --ood_dataset iSUN --model wideresnet --process confidence_scaling --epsilon 0.001 --checkpoint svhn_wideresnet_budget_0.3_seed_0
An official implementation of the Anchor DETR.

Anchor DETR: Query Design for Transformer-Based Detector Introduction This repository is an official implementation of the Anchor DETR. We encode the

MEGVII Research 276 Dec 28, 2022
[ICCV 2021] Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation

EPCDepth EPCDepth is a self-supervised monocular depth estimation model, whose supervision is coming from the other image in a stereo pair. Details ar

Rui Peng 110 Dec 23, 2022
MiraiML: asynchronous, autonomous and continuous Machine Learning in Python

MiraiML Mirai: future in japanese. MiraiML is an asynchronous engine for continuous & autonomous machine learning, built for real-time usage. Usage In

Arthur Paulino 25 Jul 27, 2022
BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training

BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training By Likun Cai, Zhi Zhang, Yi Zhu, Li Zhang, Mu Li, Xiangyang Xue. This

290 Dec 29, 2022
public repo for ESTER dataset and modeling (EMNLP'21)

Project / Paper Introduction This is the project repo for our EMNLP'21 paper: https://arxiv.org/abs/2104.08350 Here, we provide brief descriptions of

PlusLab 19 Oct 27, 2022
Acute ischemic stroke dataset

AISD Acute ischemic stroke dataset contains 397 Non-Contrast-enhanced CT (NCCT) scans of acute ischemic stroke with the interval from symptom onset to

Kongming Liang 21 Sep 06, 2022
Code for CoMatch: Semi-supervised Learning with Contrastive Graph Regularization

CoMatch: Semi-supervised Learning with Contrastive Graph Regularization (Salesforce Research) This is a PyTorch implementation of the CoMatch paper [B

Salesforce 107 Dec 14, 2022
AdamW optimizer for bfloat16 models in pytorch.

Image source AdamW optimizer for bfloat16 models in pytorch. Bfloat16 is currently an optimal tradeoff between range and relative error for deep netwo

Alex Rogozhnikov 8 Nov 20, 2022
A Lightweight Hyperparameter Optimization Tool 🚀

Lightweight Hyperparameter Optimization 🚀 The mle-hyperopt package provides a simple and intuitive API for hyperparameter optimization of your Machin

136 Jan 08, 2023
Alignment Attention Fusion framework for Few-Shot Object Detection

AAF framework Framework generalities This repository contains the code of the AAF framework proposed in this paper. The main idea behind this work is

Pierre Le Jeune 20 Dec 16, 2022
This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Prediction Graph Neural Network Model for Bike Sharing Systems".

cluster-link-prediction This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Predict

Bárbara 0 Dec 28, 2022
Neural Network Libraries

Neural Network Libraries Neural Network Libraries is a deep learning framework that is intended to be used for research, development and production. W

Sony 2.6k Dec 30, 2022
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. The Anti-Backdoor Learning

Yige-Li 51 Dec 07, 2022
A sequence of Jupyter notebooks featuring the 12 Steps to Navier-Stokes

CFD Python Please cite as: Barba, Lorena A., and Forsyth, Gilbert F. (2018). CFD Python: the 12 steps to Navier-Stokes equations. Journal of Open Sour

Barba group 2.6k Dec 30, 2022
Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model

Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model Baris Gecer 1, Binod Bhattarai 1

Baris Gecer 190 Dec 29, 2022
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

machen 11 Nov 27, 2022
[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods Large Scale Learning on Non-Homophilous Graphs: New Benchmark

60 Jan 03, 2023
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022