DrNAS: Dirichlet Neural Architecture Search

Related tags

Deep LearningDrNAS
Overview

DrNAS

About

Code accompanying the paper
ICLR'2021: DrNAS: Dirichlet Neural Architecture Search paper
Xiangning Chen*, Ruochen Wang*, Minhao Cheng*, Xiaocheng Tang, Cho-Jui Hsieh

This code is based on the implementation of NAS-Bench-201 and PC-DARTS.

This paper proposes a novel differentiable architecture search method by formulating it into a distribution learning problem. We treat the continuously relaxed architecture mixing weight as random variables, modeled by Dirichlet distribution. With recently developed pathwise derivatives, the Dirichlet parameters can be easily optimized with gradient-based optimizer in an end-to-end manner. This formulation improves the generalization ability and induces stochasticity that naturally encourages exploration in the search space. Furthermore, to alleviate the large memory consumption of differentiable NAS, we propose a simple yet effective progressive learning scheme that enables searching directly on large-scale tasks, eliminating the gap between search and evaluation phases. Extensive experiments demonstrate the effectiveness of our method. Specifically, we obtain a test error of 2.46% for CIFAR-10, 23.7% for ImageNet under the mobile setting. On NAS-Bench-201, we also achieve state-of-the-art results on all three datasets and provide insights for the effective design of neural architecture search algorithms.

Results

On NAS-Bench-201

The table below shows the test accuracy on NAS-Bench-201 space. We achieve the state-of-the-art results on all three datasets. On CIFAR-100, DrNAS even achieves the global optimal with no variance!

Method CIFAR-10 (test) CIFAR-100 (test) ImageNet-16-120 (test)
ENAS 54.30 ± 0.00 10.62 ± 0.27 16.32 ± 0.00
DARTS 54.30 ± 0.00 38.97 ± 0.00 18.41 ± 0.00
SNAS 92.77 ± 0.83 69.34 ± 1.98 43.16 ± 2.64
PC-DARTS 93.41 ± 0.30 67.48 ± 0.89 41.31 ± 0.22
DrNAS (ours) 94.36 ± 0.00 73.51 ± 0.00 46.34 ± 0.00
optimal 94.37 73.51 47.31

For every search process, we sample 100 architectures from the current Dirichlet distribution and plot their accuracy range along with the current architecture selected by Dirichlet mean (solid line). The figure below shows that the accuracy range of the sampled architectures starts very wide but narrows gradually during the search phase. It indicates that DrNAS learns to encourage exploration at the early stages and then gradually reduces it towards the end as the algorithm becomes more and more confident of the current choice. Moreover, the performance of our architectures can consistently match the best performance of the sampled architectures, indicating the effectiveness of DrNAS.

On DARTS Space (CIFAR-10)

DrNAS achieves an average test error of 2.46%, ranking top amongst recent NAS results.

Method Test Error (%) Params (M) Search Cost (GPU days)
ENAS 2.89 4.6 0.5
DARTS 2.76 ± 0.09 3.3 1.0
SNAS 2.85 ± 0.02 2.8 1.5
PC-DARTS 2.57 ± 0.07 3.6 0.1
DrNAS (ours) 2.46 ± 0.03 4.1 0.6

On DARTS Space (ImageNet)

DrNAS can perform a direct search on ImageNet and achieves a top-1 test error below 24.0%!

Method Top-1 Error (%) Params (M) Search Cost (GPU days)
DARTS* 26.7 4.7 1.0
SNAS* 27.3 4.3 1.5
PC-DARTS 24.2 5.3 3.8
DSNAS 25.7 - -
DrNAS (ours) 23.7 5.7 4.6

* not a direct search

Usage

Architecture Search

Search on NAS-Bench-201 Space: (3 datasets to choose from)

  • Data preparation: Please first download the 201 benchmark file and prepare the api follow this repository.

  • cd 201-space && python train_search.py

  • With Progressively Pruning: cd 201-space && python train_search_progressive.py

Search on DARTS Space:

  • Data preparation: For a direct search on ImageNet, we follow PC-DARTS to sample 10% and 2.5% images for earch class as train and validation.

  • CIFAR-10: cd DARTS-space && python train_search.py

  • ImageNet: cd DARTS-space && python train_search_imagenet.py

Architecture Evaluation

  • CIFAR-10: cd DARTS-space && python train.py --cutout --auxiliary

  • ImageNet: cd DARTS-space && python train_imagenet.py --auxiliary

Reference

If you find this code useful in your research please cite

@inproceedings{chen2021drnas,
    title={Dr{\{}NAS{\}}: Dirichlet Neural Architecture Search},
    author={Xiangning Chen and Ruochen Wang and Minhao Cheng and Xiaocheng Tang and Cho-Jui Hsieh},
    booktitle={International Conference on Learning Representations},
    year={2021},
    url={https://openreview.net/forum?id=9FWas6YbmB3}
}

Related Publications

Owner
Xiangning Chen
UCLA CS Ph.D. Student
Xiangning Chen
Code implementation from my Medium blog post: [Transformers from Scratch in PyTorch]

transformer-from-scratch Code for my Medium blog post: Transformers from Scratch in PyTorch Note: This Transformer code does not include masked attent

Frank Odom 27 Dec 21, 2022
Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Seulki Park 70 Jan 03, 2023
Microscopy Image Cytometry Toolkit

Cytokit Cytokit is a collection of tools for quantifying and analyzing properties of individual cells in large fluorescent microscopy datasets with a

Hammer Lab 106 Jan 06, 2023
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
The code of "Dependency Learning for Legal Judgment Prediction with a Unified Text-to-Text Transformer".

Code data_preprocess.py: preprocess data for Dependent-T5. parameters.py: define parameters of Dependent-T5. train_tools.py: traning and evaluation co

1 Apr 21, 2022
一套完整的微博舆情分析流程代码,包括微博爬虫、LDA主题分析和情感分析。

已经将项目的关键文件上传,包含微博爬虫、LDA主题分析和情感分析三个部分。 1.微博爬虫 实现微博评论爬取和微博用户信息爬取,一天大概十万条。 2.LDA主题分析 实现文档主题抽取,包括数据清洗及分词、主题数的确定(主题一致性和困惑度)和最优主题模型的选择(暴力搜索)。 3.情感分析 实现评论文本的

182 Jan 02, 2023
GBIM(Gesture-Based Interaction map)

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

8 Feb 10, 2022
PyTorch implementation of Tacotron speech synthesis model.

tacotron_pytorch PyTorch implementation of Tacotron speech synthesis model. Inspired from keithito/tacotron. Currently not as much good speech quality

Ryuichi Yamamoto 279 Dec 09, 2022
Model Zoo of BDD100K Dataset

Model Zoo of BDD100K Dataset

ETH VIS Group 200 Dec 27, 2022
EfficientNetv2 TensorRT int8

EfficientNetv2_TensorRT_int8 EfficientNetv2模型实现来自https://github.com/d-li14/efficientnetv2.pytorch 环境配置 ubuntu:18.04 cuda:11.0 cudnn:8.0 tensorrt:7

34 Apr 24, 2022
Official codebase for Pretrained Transformers as Universal Computation Engines.

universal-computation Overview Official codebase for Pretrained Transformers as Universal Computation Engines. Contains demo notebook and scripts to r

Kevin Lu 210 Dec 28, 2022
[SIGIR22] Official PyTorch implementation for "CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space".

CORE This is the official PyTorch implementation for the paper: Yupeng Hou, Binbin Hu, Zhiqiang Zhang, Wayne Xin Zhao. CORE: Simple and Effective Sess

RUCAIBox 26 Dec 19, 2022
以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的斗地主ai

ddz-ai 介绍 斗地主是一种扑克游戏。游戏最少由3个玩家进行,用一副54张牌(连鬼牌),其中一方为地主,其余两家为另一方,双方对战,先出完牌的一方获胜。 ddz-ai以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的系统,使其经过大量训练后,能在实际游戏中获

freefuiiismyname 88 May 15, 2022
DiffWave is a fast, high-quality neural vocoder and waveform synthesizer.

DiffWave DiffWave is a fast, high-quality neural vocoder and waveform synthesizer. It starts with Gaussian noise and converts it into speech via itera

LMNT 498 Jan 03, 2023
Measures input lag without dedicated hardware, performing motion detection on recorded or live video

What is InputLagTimer? This tool can measure input lag by analyzing a video where both the game controller and the game screen can be seen on a webcam

Bruno Gonzalez 4 Aug 18, 2022
PyTorch implementation of TSception V2 using DEAP dataset

TSception This is the PyTorch implementation of TSception V2 using DEAP dataset in our paper: Yi Ding, Neethu Robinson, Su Zhang, Qiuhao Zeng, Cuntai

Yi Ding 27 Dec 15, 2022
Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,

Mutian He 19 Oct 14, 2022
DiffStride: Learning strides in convolutional neural networks

DiffStride is a pooling layer with learnable strides. Unlike strided convolutions, average pooling or max-pooling that require cross-validating stride values at each layer, DiffStride can be initiali

Google Research 113 Dec 13, 2022
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
Repository for self-supervised landmark discovery

self-supervised-landmarks Repository for self-supervised landmark discovery Requirements pytorch pynrrd (for 3d images) Usage The use of this models i

Riddhish Bhalodia 2 Apr 18, 2022