A Python library for working with arbitrary-dimension hypercomplex numbers following the Cayley-Dickson construction of algebras.

Overview

Hypercomplex

A Python library for working with quaternions, octonions, sedenions, and beyond following the Cayley-Dickson construction of hypercomplex numbers.

The complex numbers may be viewed as an extension of the everyday real numbers. A complex number has two real-number coefficients, one multiplied by 1, the other multiplied by i.

In a similar way, a quaternion, which has 4 components, can be constructed by combining two complex numbers. Likewise, two quaternions can construct an octonion (8 components), and two octonions can construct a sedenion (16 components).

The method for this construction is known as the Cayley-Dickson construction and the resulting classes of numbers are types of hypercomplex numbers. There is no limit to the number of times you can repeat the Cayley-Dickson construction to create new types of hypercomplex numbers, doubling the number of components each time.

This Python 3 package allows the creation of number classes at any repetition level of Cayley-Dickson constructions, and has built-ins for the lower, named levels such as quaternion, octonion, and sedenion.

Hypercomplex numbers containment diagram

Installation

pip install hypercomplex

View on PyPI - View on GitHub

This package was built in Python 3.9.6 and has been tested to be compatible with python 3.6 through 3.10.

Basic Usage

from hypercomplex import Complex, Quaternion, Octonion, Voudon, cayley_dickson_construction

c = Complex(0, 7)
print(c)        # -> (0 7)
print(c == 7j)  # -> True

q = Quaternion(1.1, 2.2, 3.3, 4.4)
print(2 * q)  # -> (2.2 4.4 6.6 8.8)

print(Quaternion.e_matrix())  # -> e0  e1  e2  e3
                              #    e1 -e0  e3 -e2
                              #    e2 -e3 -e0  e1
                              #    e3  e2 -e1 -e0

o = Octonion(0, 0, 0, 0, 8, 8, 9, 9)
print(o + q)  # -> (1.1 2.2 3.3 4.4 8 8 9 9)

v = Voudon()
print(v == 0)  # -> True
print(len(v))  # -> 256

BeyondVoudon = cayley_dickson_construction(Voudon)
print(len(BeyondVoudon()))  # -> 512

For more snippets see the Thorough Usage Examples section below.

Package Contents

Three functions form the core of the package:

  • reals(base) - Given a base type (float by default), generates a class that represents numbers with 1 hypercomplex dimension, i.e. real numbers. This class can then be extended into complex numbers and beyond with cayley_dickson_construction.

    Any usual math operations on instances of the class returned by reals behave as instances of base would but their type remains the reals class. By default they are printed with the g format-spec and surrounded by parentheses, e.g. (1), to remain consistent with the format of higher dimension hypercomplex numbers.

    Python's decimal.Decimal might be another likely choice for base.

    # reals example:
    from hypercomplex import reals
    from decimal import Decimal
    
    D = reals(Decimal)
    print(D(10) / 4)   # -> (2.5)
    print(D(3) * D(9)) # -> (27)
  • cayley_dickson_construction(basis) (alias cd_construction) generates a new class of hypercomplex numbers with twice the dimension of the given basis, which must be another hypercomplex number class or class returned from reals. The new class of numbers is defined recursively on the basis according the Cayley-Dickson construction. Normal math operations may be done upon its instances and with instances of other numeric types.

    # cayley_dickson_construction example:
    from hypercomplex import *
    RealNum = reals()
    ComplexNum = cayley_dickson_construction(RealNum)
    QuaternionNum = cayley_dickson_construction(ComplexNum)
    
    q = QuaternionNum(1, 2, 3, 4)
    print(q)         # -> (1 2 3 4)
    print(1 / q)     # -> (0.0333333 -0.0666667 -0.1 -0.133333)
    print(q + 1+2j)  # -> (2 4 3 4)
  • cayley_dickson_algebra(level, base) (alias cd_algebra) is a helper function that repeatedly applies cayley_dickson_construction to the given base type (float by default) level number of times. That is, cayley_dickson_algebra returns the class for the Cayley-Dickson algebra of hypercomplex numbers with 2**level dimensions.

    # cayley_dickson_algebra example:
    from hypercomplex import *
    OctonionNum = cayley_dickson_algebra(3)
    
    o = OctonionNum(8, 7, 6, 5, 4, 3, 2, 1)
    print(o)              # -> (8 7 6 5 4 3 2 1)
    print(2 * o)          # -> (16 14 12 10 8 6 4 2)
    print(o.conjugate())  # -> (8 -7 -6 -5 -4 -3 -2 -1)

For convenience, nine internal number types are already defined, built off of each other:

Name Aliases Description
Real R, CD1, CD[0] Real numbers with 1 hypercomplex dimension based on float.
Complex C, CD2, CD[1] Complex numbers with 2 hypercomplex dimensions based on Real.
Quaternion Q, CD4, CD[2] Quaternion numbers with 4 hypercomplex dimensions based on Complex.
Octonion O, CD8, CD[3] Octonion numbers with 8 hypercomplex dimensions based on Quaternion.
Sedenion S, CD16, CD[4] Sedenion numbers with 16 hypercomplex dimensions based on Octonion.
Pathion P, CD32, CD[5] Pathion numbers with 32 hypercomplex dimensions based on Sedenion.
Chingon X, CD64, CD[6] Chingon numbers with 64 hypercomplex dimensions based on Pathion.
Routon U, CD128, CD[7] Routon numbers with 128 hypercomplex dimensions based on Chingon.
Voudon V, CD256, CD[8] Voudon numbers with 256 hypercomplex dimensions based on Routon.
# built-in types example:
from hypercomplex import *
print(Real(4))               # -> (4)
print(C(3-7j))               # -> (3 -7)
print(CD4(.1, -2.2, 3.3e3))  # -> (0.1 -2.2 3300 0)
print(CD[3](1, 0, 2, 0, 3))  # -> (1 0 2 0 3 0 0 0)

The names and letter-abbreviations were taken from this image (mirror) found in Micheal Carter's paper Visualization of the Cayley-Dickson Hypercomplex Numbers Up to the Chingons (64D), but they also may be known according to their Latin naming conventions.

Thorough Usage Examples

This list follows examples.py exactly and documents nearly all the things you can do with the hypercomplex numbers created by this package.

Every example assumes the appropriate imports are already done, e.g. from hypercomplex import *.

  1. Initialization can be done in various ways, including using Python's built in complex numbers. Unspecified coefficients become 0.

    print(R(-1.5))                        # -> (-1.5)
    print(C(2, 3))                        # -> (2 3)
    print(C(2 + 3j))                      # -> (2 3)
    print(Q(4, 5, 6, 7))                  # -> (4 5 6 7)
    print(Q(4 + 5j, C(6, 7), pair=True))  # -> (4 5 6 7)
    print(P())                            # -> (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
  2. Numbers can be added and subtracted. The result will be the type with more dimensions.

    print(Q(0, 1, 2, 2) + C(9, -1))                   # -> (9 0 2 2)
    print(100.1 - O(0, 0, 0, 0, 1.1, 2.2, 3.3, 4.4))  # -> (100.1 0 0 0 -1.1 -2.2 -3.3 -4.4)
  3. Numbers can be multiplied. The result will be the type with more dimensions.

    print(10 * S(1, 2, 3))                    # -> (10 20 30 0 0 0 0 0 0 0 0 0 0 0 0 0)
    print(Q(1.5, 2.0) * O(0, -1))             # -> (2 -1.5 0 0 0 0 0 0)
    
    # notice quaternions are non-commutative
    print(Q(1, 2, 3, 4) * Q(1, 0, 0, 1))      # -> (-3 5 1 5)
    print(Q(1, 0, 0, 1) * Q(1, 2, 3, 4))      # -> (-3 -1 5 5)
  4. Numbers can be divided and inverse gives the multiplicative inverse.

    print(100 / C(0, 2))                      # -> (0 -50)
    print(C(2, 2) / Q(1, 2, 3, 4))            # -> (0.2 -0.0666667 0.0666667 -0.466667)
    print(C(2, 2) * Q(1, 2, 3, 4).inverse())  # -> (0.2 -0.0666667 0.0666667 -0.466667)
    print(R(2).inverse(), 1 / R(2))           # -> (0.5) (0.5)
  5. Numbers can be raised to integer powers, a shortcut for repeated multiplication or division.

    q = Q(0, 3, 4, 0)
    print(q**5)               # -> (0 1875 2500 0)
    print(q * q * q * q * q)  # -> (0 1875 2500 0)
    print(q**-1)              # -> (0 -0.12 -0.16 0)
    print(1 / q)              # -> (0 -0.12 -0.16 0)
    print(q**0)               # -> (1 0 0 0)
  6. conjugate gives the conjugate of the number.

    print(R(9).conjugate())           # -> (9)
    print(C(9, 8).conjugate())        # -> (9 -8)
    print(Q(9, 8, 7, 6).conjugate())  # -> (9 -8 -7 -6)
  7. norm gives the absolute value as the base type (float by default). There is also norm_squared.

    print(O(3, 4).norm(), type(O(3, 4).norm()))  # -> 5.0 <class 'float'>
    print(abs(O(3, 4)))                          # -> 5.0
    print(O(3, 4).norm_squared())                # -> 25.0
  8. Numbers are considered equal if their coefficients all match. Non-existent coefficients are 0.

    print(R(999) == V(999))         # -> True
    print(C(1, 2) == Q(1, 2))       # -> True
    print(C(1, 2) == Q(1, 2, 0.1))  # -> False
  9. coefficients gives a tuple of the components of the number in their base type (float by default). The properties real and imag are shortcuts for the first two components. Indexing can also be used (but is inefficient).

    print(R(100).coefficients())   # -> (100.0,)
    q = Q(2, 3, 4, 5)
    print(q.coefficients())        # -> (2.0, 3.0, 4.0, 5.0)
    print(q.real, q.imag)          # -> 2.0 3.0
    print(q[0], q[1], q[2], q[3])  # -> 2.0 3.0 4.0 5.0
  10. e(index) of a number class gives the unit hypercomplex number where the index coefficient is 1 and all others are 0.

    print(C.e(0))  # -> (1 0)
    print(C.e(1))  # -> (0 1)
    print(O.e(3))  # -> (0 0 0 1 0 0 0 0)
  11. e_matrix of a number class gives the multiplication table of e(i)*e(j). Set string=False to get a 2D list instead of a string. Set raw=True to get the raw hypercomplex numbers.

    print(O.e_matrix())                        # -> e1  e2  e3  e4  e5  e6  e7
                                               #   -e0  e3 -e2  e5 -e4 -e7  e6
                                               #   -e3 -e0  e1  e6  e7 -e4 -e5
                                               #    e2 -e1 -e0  e7 -e6  e5 -e4
                                               #   -e5 -e6 -e7 -e0  e1  e2  e3
                                               #    e4 -e7  e6 -e1 -e0 -e3  e2
                                               #    e7  e4 -e5 -e2  e3 -e0 -e1
                                               #   -e6  e5  e4 -e3 -e2  e1 -e0
                                               #
    print(C.e_matrix(string=False, raw=True))  # -> [[(1 0), (0 1)], [(0 1), (-1 0)]]
  12. A number is considered truthy if it has has non-zero coefficients. Conversion to int, float and complex are only valid when the coefficients beyond the dimension of those types are all 0.

    print(bool(Q()))                    # -> False
    print(bool(Q(0, 0, 0.01, 0)))       # -> True
    
    print(complex(Q(5, 5)))             # -> (5+5j)
    print(int(V(9.9)))                  # -> 9
    # print(float(C(1, 2))) <- invalid
  13. Any usual format spec for the base type can be given in an f-string.

    o = O(0.001, 1, -2, 3.3333, 4e5)
    print(f"{o:.2f}")                 # -> (0.00 1.00 -2.00 3.33 400000.00 0.00 0.00 0.00)
    print(f"{R(23.9):04.0f}")         # -> (0024)
  14. The len of a number is its hypercomplex dimension, i.e. the number of components or coefficients it has.

    print(len(R()))      # -> 1
    print(len(C(7, 7)))  # -> 2
    print(len(U()))      # -> 128
  15. Using in behaves the same as if the number were a tuple of its coefficients.

    print(3 in Q(1, 2, 3, 4))  # -> True
    print(5 in Q(1, 2, 3, 4))  # -> False
  16. copy can be used to duplicate a number (but should generally never be needed as all operations create a new number).

    x = O(9, 8, 7)
    y = x.copy()
    print(x == y)   # -> True
    print(x is y)   # -> False
  17. base on a number class will return the base type the entire numbers are built upon.

    print(R.base())                      # -> <class 'float'>
    print(V.base())                      # -> <class 'float'>
    A = cayley_dickson_algebra(20, int)
    print(A.base())                      # -> <class 'int'>
  18. Hypercomplex numbers are weird, so be careful! Here two non-zero sedenions multiply to give zero because sedenions and beyond have zero devisors.

    s1 = S.e(5) + S.e(10)
    s2 = S.e(6) + S.e(9)
    print(s1)                                    # -> (0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0)
    print(s2)                                    # -> (0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0)
    print(s1 * s2)                               # -> (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
    print((1 / s1) * (1 / s2))                   # -> (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
    # print(1/(s1 * s2)) <- zero division error

About

I wrote this package for the novelty of it and as a math and programming exercise. The operations it can perform on hypercomplex numbers are not particularly efficient due to the recursive nature of the Cayley-Dickson construction.

I am not a mathematician, only a math hobbyist, and apologize if there are issues with the implementations or descriptions I have provided.

Neural style in TensorFlow! 🎨

neural-style An implementation of neural style in TensorFlow. This implementation is a lot simpler than a lot of the other ones out there, thanks to T

Anish Athalye 5.5k Dec 29, 2022
CR-Fill: Generative Image Inpainting with Auxiliary Contextual Reconstruction. ICCV 2021

crfill Usage | Web App | | Paper | Supplementary Material | More results | code for paper ``CR-Fill: Generative Image Inpainting with Auxiliary Contex

182 Dec 20, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang code will be released soon

145 Dec 13, 2022
Hand gesture recognition model that can be used as a remote control for a smart tv.

Gesture_recognition The training data consists of a few hundred videos categorised into one of the five classes. Each video (typically 2-3 seconds lon

Pratyush Negi 1 Aug 11, 2022
Codes and Data Processing Files for our paper.

Code Scripts and Processing Files for EEG Sleep Staging Paper 1. Folder Tree ./src_preprocess (data preprocessing files for SHHS and Sleep EDF) sleepE

Chaoqi Yang 18 Dec 12, 2022
MMFlow is an open source optical flow toolbox based on PyTorch

Documentation: https://mmflow.readthedocs.io/ Introduction English | 简体中文 MMFlow is an open source optical flow toolbox based on PyTorch. It is a part

OpenMMLab 688 Jan 06, 2023
Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.

Demonstration of OpenVINO techniques - Model-division and a simplest-way to support custom layers Description: Model Optimizer in Intel(r) OpenVINO(tm

Yasunori Shimura 12 Nov 09, 2022
This is the official repository of the paper Stocastic bandits with groups of similar arms (NeurIPS 2021). It contains the code that was used to compute the figures and experiments of the paper.

Experiments How to reproduce experimental results of Stochastic bandits with groups of similar arms submitted paper ? Section 5 of the paper To reprod

Fabien 0 Oct 25, 2021
Super-Fast-Adversarial-Training - A PyTorch Implementation code for developing super fast adversarial training

Super-Fast-Adversarial-Training This is a PyTorch Implementation code for develo

LBK 26 Dec 02, 2022
This is the PyTorch implementation of GANs N’ Roses: Stable, Controllable, Diverse Image to Image Translation

Official PyTorch repo for GAN's N' Roses. Diverse im2im and vid2vid selfie to anime translation.

1.1k Jan 01, 2023
MLOps will help you to understand how to build a Continuous Integration and Continuous Delivery pipeline for an ML/AI project.

page_type languages products description sample python azure azure-machine-learning-service azure-devops Code which demonstrates how to set up and ope

1 Nov 01, 2021
Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners This repository is built upon BEiT, thanks very much! Now, we on

Zhiliang Peng 2.3k Jan 04, 2023
A no-BS, dead-simple training visualizer for tf-keras

A no-BS, dead-simple training visualizer for tf-keras TrainingDashboard Plot inter-epoch and intra-epoch loss and metrics within a jupyter notebook wi

Vibhu Agrawal 3 May 28, 2021
AI that generate music

PianoGPT ai that generate music try it here https://share.streamlit.io/annasajkh/pianogpt/main/main.py or here https://huggingface.co/spaces/Annas/Pia

Annas 28 Nov 27, 2022
PyTorch implementation of DeepLab v2 on COCO-Stuff / PASCAL VOC

DeepLab with PyTorch This is an unofficial PyTorch implementation of DeepLab v2 [1] with a ResNet-101 backbone. COCO-Stuff dataset [2] and PASCAL VOC

Kazuto Nakashima 995 Jan 08, 2023
A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

443 Jan 06, 2023
TensorFlow implementation of "Attention is all you need (Transformer)"

[TensorFlow 2] Attention is all you need (Transformer) TensorFlow implementation of "Attention is all you need (Transformer)" Dataset The MNIST datase

YeongHyeon Park 4 Jan 05, 2022
Anderson Acceleration for Deep Learning

Anderson Accelerated Deep Learning (AADL) AADL is a Python package that implements the Anderson acceleration to speed-up the training of deep learning

Oak Ridge National Laboratory 7 Nov 24, 2022
YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with ONNX, TensorRT, ncnn, and OpenVINO supported.

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

7.7k Jan 03, 2023
SCAN: Learning to Classify Images without Labels, incl. SimCLR. [ECCV 2020]

Learning to Classify Images without Labels This repo contains the Pytorch implementation of our paper: SCAN: Learning to Classify Images without Label

Wouter Van Gansbeke 1.1k Dec 30, 2022