SCAN: Learning to Classify Images without Labels, incl. SimCLR. [ECCV 2020]

Overview

Learning to Classify Images without Labels

This repo contains the Pytorch implementation of our paper:

SCAN: Learning to Classify Images without Labels

Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis, Marc Proesmans and Luc Van Gool.

  • Accepted at ECCV 2020 (Slides). Watch the explanation of our paper by Yannic Kilcher on YouTube.

  • 🏆 SOTA on 4 benchmarks. Check out Papers With Code for Image Clustering or Unsup. Classification.

  • 🆕 Interested in representation learning on non-curated datasets? Check out our NeurIPS'21 paper and code.

  • 🆕 Interested in unsupervised semantic segmentation? Check out our ICCV'21 paper: MaskContrast.

  • 📜 Looking for influential papers in self-supervised learning? Check out this reading list.

PWC PWC PWC PWC

Contents

  1. Introduction
  2. Prior Work
  3. Installation
  4. Training
  5. Model Zoo
  6. Tutorial
  7. Citation

🆕 Tutorial section has been added, checkout TUTORIAL.md.

🆕 Prior work section has been added, checkout Prior Work.

Introduction

Can we automatically group images into semantically meaningful clusters when ground-truth annotations are absent? The task of unsupervised image classification remains an important, and open challenge in computer vision. Several recent approaches have tried to tackle this problem in an end-to-end fashion. In this paper, we deviate from recent works, and advocate a two-step approach where feature learning and clustering are decoupled.

We outperform state-of-the-art methods by large margins, in particular +26.6% on CIFAR10, +25.0% on CIFAR100-20 and +21.3% on STL10 in terms of classification accuracy. Our method is the first to perform well on ImageNet (1000 classes). Check out the benchmarks on the Papers-with-code website for Image Clustering and Unsupervised Image Classification.

Prior Work

  • Train set/test set: We would like to point out that most prior work in unsupervised classification use both the train and test set during training. We believe this is bad practice and therefore propose to only train on the train set. The final numbers should be reported on the test set (see table 3 of our paper). This also allows us to directly compare with supervised and semi-supervised methods in the literature. We encourage future work to do the same. We observe around 2% improvement over the reported numbers when including the test set.

  • Reproducibility: We noticed that prior work is very initialization sensitive. So, we don't think reporting a single number is therefore fair. We report our results as the mean and standard deviation over 10 runs.

Please follow the instructions underneath to perform semantic clustering with SCAN.

Installation

The code runs with recent Pytorch versions, e.g. 1.4. Assuming Anaconda, the most important packages can be installed as:

conda install pytorch=1.4.0 torchvision=0.5.0 cudatoolkit=10.0 -c pytorch
conda install matplotlib scipy scikit-learn   # For evaluation and confusion matrix visualization
conda install faiss-gpu                       # For efficient nearest neighbors search 
conda install pyyaml easydict                 # For using config files
conda install termcolor                       # For colored print statements

We refer to the requirements.txt file for an overview of the packages in the environment we used to produce our results.

Training

Setup

The following files need to be adapted in order to run the code on your own machine:

  • Change the file paths to the datasets in utils/mypath.py, e.g. /path/to/cifar10.
  • Specify the output directory in configs/env.yml. All results will be stored under this directory.

Our experimental evaluation includes the following datasets: CIFAR10, CIFAR100-20, STL10 and ImageNet. The ImageNet dataset should be downloaded separately and saved to the path described in utils/mypath.py. Other datasets will be downloaded automatically and saved to the correct path when missing.

Train model

The configuration files can be found in the configs/ directory. The training procedure consists of the following steps:

  • STEP 1: Solve the pretext task i.e. simclr.py
  • STEP 2: Perform the clustering step i.e. scan.py
  • STEP 3: Perform the self-labeling step i.e. selflabel.py

For example, run the following commands sequentially to perform our method on CIFAR10:

python simclr.py --config_env configs/your_env.yml --config_exp configs/pretext/simclr_cifar10.yml
python scan.py --config_env configs/your_env.yml --config_exp configs/scan/scan_cifar10.yml
python selflabel.py --config_env configs/your_env.yml --config_exp configs/selflabel/selflabel_cifar10.yml

Remarks

The provided hyperparameters are identical for CIFAR10, CIFAR100-20 and STL10. However, fine-tuning the hyperparameters can further improve the results. We list the most important hyperparameters of our method below:

  • Entropy weight: Can be adapted when the number of clusters changes. In general, try to avoid imbalanced clusters during training.
  • Confidence threshold: When every cluster contains a sufficiently large amount of confident samples, it can be beneficial to increase the threshold. This generally helps to decrease the noise. The ablation can be found in the paper.
  • Number of neighbors in SCAN: The dependency on this hyperparameter is rather small as shown in the paper.

Model Zoo

Pretext tasks

We perform the instance discrimination task in accordance with the scheme from SimCLR on CIFAR10, CIFAR100 and STL10. Pretrained models can be downloaded from the links listed below. On ImageNet, we use the pretrained weights provided by MoCo and transfer them to be compatible with our code repository.

Dataset Download link
CIFAR10 Download
CIFAR100 Download
STL10 Download

Clustering

We provide the following pretrained models after training with the SCAN-loss, and after the self-labeling step. The best models can be found here and we futher refer to the paper for the averages and standard deviations.

Dataset Step ACC NMI ARI Download link
CIFAR10 SCAN-loss 81.6 71.5 66.5 Download
Self-labeling 88.3 79.7 77.2 Download
CIFAR100 SCAN-loss 44.0 44.9 28.3 Download
Self-labeling 50.7 48.6 33.3 Download
STL10 SCAN-loss 79.2 67.3 61.8 Download
Self-labeling 80.9 69.8 64.6 Download
ImageNet-50 SCAN-loss 75.1 80.5 63.5 Download
Self-labeling 76.8 82.2 66.1 Download
ImageNet-100 SCAN-loss 66.2 78.7 54.4 Download
Self-labeling 68.9 80.8 57.6 Download
ImageNet-200 SCAN-loss 56.3 75.7 44.1 Download
Self-labeling 58.1 77.2 47.0 Download

Result ImageNet

We also train SCAN on ImageNet for 1000 clusters. We use 10 clusterheads and finally take the head with the lowest loss. The accuracy (ACC), normalized mutual information (NMI), adjusted mutual information (AMI) and adjusted rand index (ARI) are computed:

Method ACC NMI AMI ARI Download link
SCAN (ResNet50) 39.9 72.0 51.2 27.5 Download

Evaluation

Pretrained models from the model zoo can be evaluated using the eval.py script. For example, the model on cifar-10 can be evaluated as follows:

python eval.py --config_exp configs/scan/scan_cifar10.yml --model $MODEL_PATH 

Visualizing the prototype images is easily done by setting the --visualize_prototypes flag. For example on cifar-10:

Similarly, you might want to have a look at the clusters found on ImageNet (as shown at the top). First download the model (link in table above) and then execute the following command:

python eval.py --config_exp configs/scan/imagenet_eval.yml --model $MODEL_PATH_IMAGENET 

Tutorial

If you want to see another (more detailed) example for STL-10, checkout TUTORIAL.md. It provides a detailed guide and includes visualizations and log files with the training progress.

Citation

If you find this repo useful for your research, please consider citing our paper:

@inproceedings{vangansbeke2020scan,
  title={Scan: Learning to classify images without labels},
  author={Van Gansbeke, Wouter and Vandenhende, Simon and Georgoulis, Stamatios and Proesmans, Marc and Van Gool, Luc},
  booktitle={Proceedings of the European Conference on Computer Vision},
  year={2020}
}

For any enquiries, please contact the main authors.

License

This software is released under a creative commons license which allows for personal and research use only. For a commercial license please contact the authors. You can view a license summary here.

Acknoledgements

This work was supported by Toyota, and was carried out at the TRACE Lab at KU Leuven (Toyota Research on Automated Cars in Europe - Leuven).

Owner
Wouter Van Gansbeke
PhD researcher at KU Leuven. Especially interested in computer vision, machine learning and deep learning. Working on self-supervised and multi-task learning.
Wouter Van Gansbeke
Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors

Gas detection Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors. Description The MQ-2 sensor can detect multiple gases (CO, H2, CH4, LPG,

Filip Š 15 Sep 30, 2022
Generate image analogies using neural matching and blending

neural image analogies This is basically an implementation of this "Image Analogies" paper, In our case, we use feature maps from VGG16. The patch mat

Adam Wentz 3.5k Jan 08, 2023
A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perform basic tasks.

AI_Personal_Voice_Assistant_Using_Python A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perf

Chumui Tripura 1 Oct 30, 2021
PyTorch implementation of the paper: Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features

Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features Estimate the noise transition matrix with f-mutual information. This co

<a href=[email protected]"> 1 Jun 05, 2022
Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Sidd Karamcheti 50 Nov 16, 2022
Fast image augmentation library and easy to use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
CRF-RNN for Semantic Image Segmentation - PyTorch version

This repository contains the official PyTorch implementation of the "CRF-RNN" semantic image segmentation method, published in the ICCV 2015

Sadeep Jayasumana 170 Dec 13, 2022
Fashion Entity Classification

Fashion-Entity-Classification - Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grays

ADITYA SHAH 1 Jan 04, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intelligent Systems Lab Org 1.3k Jan 02, 2023
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
A web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks

This project is a web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks. Thanks for NVlabs' excelle

K.L. 150 Dec 15, 2022
An experimental technique for efficiently exploring neural architectures.

SMASH: One-Shot Model Architecture Search through HyperNetworks An experimental technique for efficiently exploring neural architectures. This reposit

Andy Brock 478 Aug 04, 2022
Unsupervised Learning of Multi-Frame Optical Flow with Occlusions

This is a Pytorch implementation of Janai, J., Güney, F., Ranjan, A., Black, M. and Geiger, A., Unsupervised Learning of Multi-Frame Optical Flow with

Anurag Ranjan 110 Nov 02, 2022
Models Supported: AlbUNet [18, 34, 50, 101, 152] (1D and 2D versions for Single and Multiclass Segmentation, Feature Extraction with supports for Deep Supervision and Guided Attention)

AlbUNet-1D-2D-Tensorflow-Keras This repository contains 1D and 2D Signal Segmentation Model Builder for AlbUNet and several of its variants developed

Sakib Mahmud 1 Nov 15, 2021
Light-weight network, depth estimation, knowledge distillation, real-time depth estimation, auxiliary data.

light-weight-depth-estimation Boosting Light-Weight Depth Estimation Via Knowledge Distillation, https://arxiv.org/abs/2105.06143 Junjie Hu, Chenyou F

Junjie Hu 13 Dec 10, 2022
This is a project based on ConvNets used to identify whether a road is clean or dirty. We have used MobileNet as our base architecture and the weights are based on imagenet.

PROJECT TITLE: CLEAN/DIRTY ROAD DETECTION USING TRANSFER LEARNING Description: This is a project based on ConvNets used to identify whether a road is

Faizal Karim 3 Nov 06, 2022
Graph Convolutional Networks for Temporal Action Localization (ICCV2019)

Graph Convolutional Networks for Temporal Action Localization This repo holds the codes and models for the PGCN framework presented on ICCV 2019 Graph

Runhao Zeng 318 Dec 06, 2022
Generating Videos with Scene Dynamics

Generating Videos with Scene Dynamics This repository contains an implementation of Generating Videos with Scene Dynamics by Carl Vondrick, Hamed Pirs

Carl Vondrick 706 Jan 04, 2023
Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contrastive Image Deraining"

SAPNet This repository contains the official Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contr

11 Oct 17, 2022
A Deep Learning Framework for Neural Derivative Hedging

NNHedge NNHedge is a PyTorch based framework for Neural Derivative Hedging. The following repository was implemented to ease the experiments of our pa

GUIJIN SON 17 Nov 14, 2022