Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.

Overview

Demonstration of OpenVINO techniques - Model-division and a simplest-way to support custom layers

Description:

Model Optimizer in Intel(r) OpenVINO(tm) toolkit supports model division function. User can specify the region in the model to convert by specifying entry point and exit point with --input and --output options respectively.
The expected usage of those options are:

  • Excluding unnecessary layers: Removing non-DL related layers (such as JPEG decode) and layers not required for inferencing (such as accuracy metrics calculation)
  • Load balancing: Divide a model into multiple parts and cascade them to get the final inferencing result. Each individual part can be run on different device or different timing.
  • Access to the intermediate result: Divide a model and get the intermediate feature data to check the model integrity or for the other purposes.
  • Exclude non-supported layers: Convert the model without OpenVINO non-supprted layers. Divide the model and skip non-supported layers to get the IR models. User needs to perform the equivalent processing for the excluded layers to get the correct inferencing result.

This project demonstrates how to divide a DL model, and fill the hole for skipped leyers.
The project includes Python and C++ implementations of naive 2D convolution layer to perform the Conv2D task which was supposed to have done by the skipped layer. This could be a good reference when you need to implement a custom layer function to your project but don't want to develop full-blown OpenVINO custom layers due to some restrictions such as development time.
In this project, we will use a simple CNN classification model trained with MNIST dataset and demonstrate the way to divide the model with skipping a layer (on purpose) and use a simple custom layer to cover the data processing for the skipped layer.

image

Prerequisites:

  • TensorFlow 2.x
  • OpenVINO 2021.4 (2021.x may work)

How to train the model and create a trained model

You can train the model by just kicking the training.py script. training.py will use keras.datasets.mnist as the training and validation dataset and train the model, and then save the trained model in SavedModel format.
training.py also generates weights.npy file that contains the weight and bias data of target_conv_layer layer. This weight and bias data will be used by the special made Conv2D layer.
Since the model we use is tiny, it will take just a couple of minutes to complete.

python3 training.py

How to convert a TF trained model into OpenVINO IR model format

Model Optimizer in OpenVINO converts TF (savedmodel) model into OpenVINO IR model.
Here's a set of script to convert the model for you.

script description
convert-normal.sh Convert entire model and generate single IR model file (no division)
convert-divide.sh Divide the input model and output 2 IR models. All layers are still contained (no skipped layers)
convert-divide-skip.sh Divide the input model and skip 'target_conv_layer'
  • The converted models can be found in ./models folder.

Tip to find the correct node name for Model Optimizer

Model optimizer requires MO internal networkx graph node name to specify --input and --output nodes. You can modify the model optimizer a bit to have it display the list of networkx node names. Add 3 lines on the very bottom of the code snnipet below and run the model optimizer.

mo/utils/class_registration.py

def apply_replacements_list(graph: Graph, replacers_order: list):
    """
    Apply all transformations from replacers_order
    """
    for i, replacer_cls in enumerate(replacers_order):
        apply_transform(
            graph=graph,
            replacer_cls=replacer_cls,
            curr_transform_num=i,
            num_transforms=len(replacers_order))
        # Display name of available nodes after the 'loader' stage
        if 'LoadFinish' in str(replacer_cls):
            for node in graph.nodes():
                print(node)

You'll see something like this. You need to use one of those node names for --input and --output options in MO.

conv2d_input
Func/StatefulPartitionedCall/input/_0
unknown
Func/StatefulPartitionedCall/input/_1
StatefulPartitionedCall/sequential/conv2d/Conv2D/ReadVariableOp
StatefulPartitionedCall/sequential/conv2d/Conv2D
   :   (truncated)   :
StatefulPartitionedCall/sequential/dense_1/BiasAdd/ReadVariableOp
StatefulPartitionedCall/sequential/dense_1/BiasAdd
StatefulPartitionedCall/sequential/dense_1/Softmax
StatefulPartitionedCall/Identity
Func/StatefulPartitionedCall/output/_11
Func/StatefulPartitionedCall/output_control_node/_12
Identity
Identity56

How to infer with the models on OpenVINO

Several versions of scripts are available for the inference testing.
Those test programs will do inference 10,000 times with the MNIST validation dataset. Test program displays '.' when inference result is correct and 'X' when it's wrong. Performance numbers are measured from the start of 10,000 inferences to the end of all inferences. So, it is including loop overhead, pre/post processing time and so on.

script description (reference execution time, Core i7-8665U)
inference.py Use simgle, monolithic IR model and run inference 3.3 sec
inference-div.py Take 2 divided IR models and run inference. 2 models will be cascaded. 5.3 sec(*1)
inference-skip-python.py Tak2 2 divided IR models which excluded the 'target_conv_layer'. Program is including a Python version of Conv2D and perform convolution for 'target_conv_layer'. VERY SLOW. 4338.6 sec
inference-skip-cpp.py Tak2 2 divided IR models which excluded the 'target_conv_layer'. Program imports a Python module written in C++ which includes a C++ version of Conv2D. Reasonably fast. Conv2D Python extension module is required. Please refer to the following section for details. 10.8 sec

Note 1: This model is quite tiny and light-weight. OpenVINO can run this model in <0.1msec on Core i7-8665U CPU. The inferencing overhead introduced by dividing the model is noticeable but when you use heavy model, this penalty might be negligible.

How to build the Conv2D C++ Python extnsion module

You can build the Conv2D C++ Python extension module by running build.sh or build.bat.
myLayers.so or myLayers.pyd will be generated and copied to the current directory after a successful build.

How to run draw-and-infer demo program

Here's a simple yet bit fun demo application for MNIST CNN. You can draw a number on the screen by mouse or finger-tip and you'll see the real-time inference result. Right-click will clear the screen for another try. Several versions are available.

script description
draw-and-infer.py Use the monolithic IR model
draw-and-infer-div.py Use divided IR models
draw-and-infer-skip-cpp.py Use divided IR models which excluded 'target_conv_layer'. Conv2D Python extension is requird.

draw-and-infer

Tested environment

  • Windows 10 + VS2019 + OpenVINO 2021.4
  • Ubuntu 20.04 + OpenVINO 2021.4
Owner
Yasunori Shimura
Yasunori Shimura
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
Chainer Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

fcn - Fully Convolutional Networks Chainer implementation of Fully Convolutional Networks. Installation pip install fcn Inference Inference is done as

Kentaro Wada 218 Oct 27, 2022
Image Matching Evaluation

Image Matching Evaluation (IME) IME provides to test any feature matching algorithm on datasets containing ground-truth homographies. Also, one can re

32 Nov 17, 2022
AdaDM: Enabling Normalization for Image Super-Resolution

AdaDM AdaDM: Enabling Normalization for Image Super-Resolution. You can apply BN, LN or GN in SR networks with our AdaDM. Pretrained models (EDSR*/RDN

58 Jan 08, 2023
Galaxy images labelled by morphology (shape). Aimed at ML development and teaching

Galaxy images labelled by morphology (shape). Aimed at ML debugging and teaching.

Mike Walmsley 14 Nov 28, 2022
Lama-cleaner: Image inpainting tool powered by LaMa

Lama-cleaner: Image inpainting tool powered by LaMa

Qing 5.8k Jan 05, 2023
Framework for evaluating ANNS algorithms on billion scale datasets.

Billion-Scale ANN http://big-ann-benchmarks.com/ Install The only prerequisite is Python (tested with 3.6) and Docker. Works with newer versions of Py

Harsha Vardhan Simhadri 132 Dec 24, 2022
Functional TensorFlow Implementation of Singular Value Decomposition for paper Fast Graph Learning

tf-fsvd TensorFlow Implementation of Functional Singular Value Decomposition for paper Fast Graph Learning with Unique Optimal Solutions Cite If you f

Sami Abu-El-Haija 14 Nov 25, 2021
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Jan 06, 2023
Classifying audio using Wavelet transform and deep learning

Audio Classification using Wavelet Transform and Deep Learning A step-by-step tutorial to classify audio signals using continuous wavelet transform (C

Aditya Dutt 17 Nov 29, 2022
Online Multi-Granularity Distillation for GAN Compression (ICCV2021)

Online Multi-Granularity Distillation for GAN Compression (ICCV2021) This repository contains the pytorch codes and trained models described in the IC

Bytedance Inc. 299 Dec 16, 2022
Recognize numbers from an (28 x 28) image using neural networks

Number recognition Recognize numbers from a 28 x 28 image using neural networks Usage This is an example of a simple usage of number-recognition NOTE:

Mauro Baladés 2 Dec 29, 2021
The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track.

ISC21-Descriptor-Track-1st The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track. You can check our solution

lyakaap 75 Jan 08, 2023
Hso-groupie - A pwnable challenge in Real World CTF 4th

Hso-groupie - A pwnable challenge in Real World CTF 4th

Riatre Foo 42 Dec 05, 2022
Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size.

Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size. The hub data layout enables rapid transformations and streaming of data while training m

Activeloop 5.1k Jan 08, 2023
The project was to detect traffic signs, based on the Megengine framework.

trafficsign 赛题 旷视AI智慧交通开源赛道,初赛1/177,复赛1/12。 本赛题为复杂场景的交通标志检测,对五种交通标志进行识别。 框架 megengine 算法方案 网络框架 atss + resnext101_32x8d 训练阶段 图片尺寸 最终提交版本输入图片尺寸为(1500,2

20 Dec 02, 2022
PyTorch Implementation of CvT: Introducing Convolutions to Vision Transformers

CvT: Introducing Convolutions to Vision Transformers Pytorch implementation of CvT: Introducing Convolutions to Vision Transformers Usage: img = torch

Rishikesh (ऋषिकेश) 193 Jan 03, 2023
"Structure-Augmented Text Representation Learning for Efficient Knowledge Graph Completion"(WWW 2021)

STAR_KGC This repo contains the source code of the paper accepted by WWW'2021. "Structure-Augmented Text Representation Learning for Efficient Knowled

Bo Wang 60 Dec 26, 2022
Weakly-supervised object detection.

Wetectron Wetectron is a software system that implements state-of-the-art weakly-supervised object detection algorithms. Project CVPR'20, ECCV'20 | Pa

NVIDIA Research Projects 342 Jan 05, 2023