Joint Versus Independent Multiview Hashing for Cross-View Retrieval[J] (IEEE TCYB 2021, PyTorch Code)

Related tags

Deep LearningDCHN
Overview

2021-IEEE TCYB-DCHN

Peng Hu, Xi Peng, Hongyuan Zhu, Jie Lin, Liangli Zhen, Dezhong Peng, Joint Versus Independent Multiview Hashing for Cross-View Retrieval[J]. IEEE Transactions on Cybernetics, vol. 51, no. 10, pp. 4982-4993, Oct. 2021. (PyTorch Code)

Abstract

Thanks to the low storage cost and high query speed, cross-view hashing (CVH) has been successfully used for similarity search in multimedia retrieval. However, most existing CVH methods use all views to learn a common Hamming space, thus making it difficult to handle the data with increasing views or a large number of views. To overcome these difficulties, we propose a decoupled CVH network (DCHN) approach which consists of a semantic hashing autoencoder module (SHAM) and multiple multiview hashing networks (MHNs). To be specific, SHAM adopts a hashing encoder and decoder to learn a discriminative Hamming space using either a few labels or the number of classes, that is, the so-called flexible inputs. After that, MHN independently projects all samples into the discriminative Hamming space that is treated as an alternative ground truth. In brief, the Hamming space is learned from the semantic space induced from the flexible inputs, which is further used to guide view-specific hashing in an independent fashion. Thanks to such an independent/decoupled paradigm, our method could enjoy high computational efficiency and the capacity of handling the increasing number of views by only using a few labels or the number of classes. For a newly coming view, we only need to add a view-specific network into our model and avoid retraining the entire model using the new and previous views. Extensive experiments are carried out on five widely used multiview databases compared with 15 state-of-the-art approaches. The results show that the proposed independent hashing paradigm is superior to the common joint ones while enjoying high efficiency and the capacity of handling newly coming views.

Framework

DCHN

Figure 1. Framework of the proposed DCHN method. g is the output of the corresponding view (i.e., image, text, video, etc.). o is the semantic hash code that is computed by the corresponding label y and semantic hashing transformation W. W is computed by the proposed semantic hashing autoencoder module (SHAM). sgn is an elementwise sign function. ℒR and ℒH are hash reconstruction and semantic hashing functions, respectively. In the training stage, first, W is used to recast the label y as a ground-truth hash code o. Then, the obtained hash code is used to guide view-specific networks with a semantic hashing reconstruction regularizer. Such a learning scheme makes the v view-specific neural networks (one network for each view) can be trained separately since they are decoupled and do not share any trainable parameters. Therefore, our DCHN can be easy to scale to a large number of views. In the inference stage, each trained view-specific network fk(xk, Θk) is used to compute the hash code of the sample xk.

SHAM

Figure 1. Proposed SHAM utilizes the semantic information (e.g., labels or classes) to learn an encoder W and a decoder WT by mutually converting the semantic and Hamming spaces. SHAM is one key component of our independent hashing paradigm.

Usage

First, to train SHAM wtih 64 bits on MIRFLICKR-25K, just run trainSHAM.py as follows:

python trainSHAM.py --datasets mirflickr25k --output_shape 64 --gama 1 --available_num 100

Then, to train a model for image modality wtih 64 bits on MIRFLICKR-25K, just run main_DCHN.py as follows:

python main_DCHN.py --mode train --epochs 100 --view 0 --datasets mirflickr25k --output_shape 64 --alpha 0.02 --gama 1 --available_num 100 --gpu_id 0

For text modality:

python main_DCHN.py --mode train --epochs 100 --view 1 --datasets mirflickr25k --output_shape 64 --alpha 0.02 --gama 1 --available_num 100 --gpu_id 1

To evaluate the trained models, you could run main_DCHN.py as follows:

python main_DCHN.py --mode eval --view -1 --datasets mirflickr25k --output_shape 64 --alpha 0.02 --gama 1 --available_num 100 --num_workers 0

Comparison with the State-of-the-Art

Table 1: Performance comparison in terms of MAP scores on the MIRFLICKR-25K and IAPR TC-12 datasets. The highest MAP score is shown in bold.

   Method    MIRFLICKR-25K IAPR TC-12
Image → Text Text → Image Image → Text Text → Image
16 32 64 128 16 32 64 128 16 32 64 128 16 32 64 128
Baseline 0.581 0.520 0.553 0.573 0.578 0.544 0.556 0.579 0.329 0.292 0.309 0.298 0.332 0.295 0.311 0.304
SePH [21] 0.729 0.738 0.744 0.750 0.753 0.762 0.764 0.769 0.467 0.476 0.486 0.493 0.463 0.475 0.485 0.492
SePHlr [12] 0.729 0.746 0.754 0.763 0.760 0.780 0.785 0.793 0.410 0.434 0.448 0.463 0.461 0.495 0.515 0.525
RoPH [34] 0.733 0.744 0.749 0.756 0.757 0.759 0.768 0.771 0.457 0.481 0.493 0.500 0.451 0.478 0.488 0.495
LSRH [22] 0.756 0.780 0.788 0.800 0.772 0.786 0.791 0.802 0.474 0.490 0.512 0.522 0.474 0.492 0.511 0.526
KDLFH [23] 0.734 0.755 0.770 0.771 0.764 0.780 0.794 0.797 0.306 0.314 0.351 0.357 0.307 0.315 0.350 0.356
DLFH [23] 0.721 0.743 0.760 0.767 0.761 0.788 0.805 0.810 0.306 0.314 0.326 0.340 0.305 0.315 0.333 0.353
MTFH [13] 0.581 0.571 0.645 0.543 0.584 0.556 0.633 0.531 0.303 0.303 0.307 0.300 0.303 0.303 0.308 0.302
DJSRH [14] 0.620 0.630 0.645 0.660 0.620 0.626 0.645 0.649 0.368 0.396 0.419 0.439 0.370 0.400 0.423 0.437
DCMH [9] 0.737 0.754 0.763 0.771 0.753 0.760 0.763 0.770 0.423 0.439 0.456 0.463 0.449 0.464 0.476 0.481
SSAH [20] 0.797 0.809 0.810 0.802 0.782 0.797 0.799 0.790 0.501 0.503 0.496 0.479 0.504 0.530 0.554 0.565
DCHN0 0.806 0.823 0.836 0.842 0.797 0.808 0.823 0.827 0.487 0.492 0.550 0.573 0.481 0.488 0.543 0.567
DCHN100 0.813 0.816 0.823 0.840 0.808 0.803 0.814 0.830 0.533 0.558 0.582 0.596 0.527 0.557 0.582 0.595

Table 2: Performance comparison in terms of MAP scores on the NUS-WIDE and MS-COCO datasets. The highest MAP score is shown in bold.

   Method    NUS-WIDE MS-COCO
Image → Text Text → Image Image → Text Text → Image
16 32 64 128 16 32 64 128 16 32 64 128 16 32 64 128
Baseline 0.281 0.337 0.263 0.341 0.299 0.339 0.276 0.346 0.362 0.336 0.332 0.373 0.348 0.341 0.347 0.359
SePH [21] 0.644 0.652 0.661 0.664 0.654 0.662 0.670 0.673 0.586 0.598 0.620 0.628 0.587 0.594 0.618 0.625
SePHlr [12] 0.607 0.624 0.644 0.651 0.630 0.649 0.665 0.672 0.527 0.571 0.592 0.600 0.555 0.596 0.618 0.621
RoPH [34] 0.638 0.656 0.662 0.669 0.645 0.665 0.671 0.677 0.592 0.634 0.649 0.657 0.587 0.628 0.643 0.652
LSRH [22] 0.622 0.650 0.659 0.690 0.600 0.662 0.685 0.692 0.580 0.563 0.561 0.567 0.580 0.611 0.615 0.632
KDLFH [23] 0.323 0.367 0.364 0.403 0.325 0.365 0.368 0.408 0.373 0.403 0.451 0.542 0.370 0.400 0.449 0.542
DLFH [23] 0.316 0.367 0.381 0.404 0.319 0.379 0.386 0.415 0.352 0.398 0.455 0.443 0.359 0.393 0.456 0.442
MTFH [13] 0.265 0.473 0.434 0.445 0.243 0.418 0.414 0.485 0.288 0.264 0.311 0.413 0.301 0.284 0.310 0.406
DJSRH [14] 0.433 0.453 0.467 0.442 0.457 0.468 0.468 0.501 0.478 0.520 0.544 0.566 0.462 0.525 0.550 0.567
DCMH [9] 0.569 0.595 0.612 0.621 0.548 0.573 0.585 0.592 0.548 0.575 0.607 0.625 0.568 0.595 0.643 0.664
SSAH [20] 0.636 0.636 0.637 0.510 0.653 0.676 0.683 0.682 0.550 0.577 0.576 0.581 0.552 0.578 0.578 0.669
DCHN0 0.648 0.660 0.669 0.683 0.662 0.677 0.685 0.697 0.602 0.658 0.682 0.706 0.591 0.652 0.669 0.696
DCHN100 0.654 0.671 0.681 0.691 0.668 0.683 0.697 0.707 0.662 0.701 0.703 0.720 0.650 0.689 0.693 0.714

Citation

If you find DCHN useful in your research, please consider citing:

@article{hu2021joint,
  author={Hu, Peng and Peng, Xi and Zhu, Hongyuan and Lin, Jie and Zhen, Liangli and Peng, Dezhong},
  journal={IEEE Transactions on Cybernetics}, 
  title={Joint Versus Independent Multiview Hashing for Cross-View Retrieval}, 
  year={2021},
  volume={51},
  number={10},
  pages={4982-4993},
  doi={10.1109/TCYB.2020.3027614}}
}
Owner
https://penghu-cs.github.io/
RLDS stands for Reinforcement Learning Datasets

RLDS RLDS stands for Reinforcement Learning Datasets and it is an ecosystem of tools to store, retrieve and manipulate episodic data in the context of

Google Research 135 Jan 01, 2023
Get the partition that a file belongs and the percentage of space that consumes

tinos_eisai_sy Get the partition that a file belongs and the percentage of space that consumes (works only with OSes that use the df command) tinos_ei

Konstantinos Patronas 6 Jan 24, 2022
A PyTorch implementation of "Graph Classification Using Structural Attention" (KDD 2018).

GAM ⠀⠀ A PyTorch implementation of Graph Classification Using Structural Attention (KDD 2018). Abstract Graph classification is a problem with practic

Benedek Rozemberczki 259 Dec 05, 2022
This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities

MLOps with Vertex AI This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities. The ex

Google Cloud Platform 238 Dec 21, 2022
Automatically align face images 🙃→🙂. Can also do windowing and warping.

Automatic Face Alignment (AFA) Carl M. Gaspar & Oliver G.B. Garrod You have lots of photos of faces like this: But you want to line up all of the face

Carl Michael Gaspar 15 Dec 12, 2022
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig

Yixuan Su 79 Nov 04, 2022
A PyTorch re-implementation of Neural Radiance Fields

nerf-pytorch A PyTorch re-implementation Project | Video | Paper NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis Ben Mildenhall

Krishna Murthy 709 Jan 09, 2023
Source code for CVPR 2021 paper "Riggable 3D Face Reconstruction via In-Network Optimization"

Riggable 3D Face Reconstruction via In-Network Optimization Source code for CVPR 2021 paper "Riggable 3D Face Reconstruction via In-Network Optimizati

130 Jan 02, 2023
Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic plasticity".

Impression-Learning-Camera-Ready Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic

2 Feb 09, 2022
"Inductive Entity Representations from Text via Link Prediction" @ The Web Conference 2021

Inductive entity representations from text via link prediction This repository contains the code used for the experiments in the paper "Inductive enti

Daniel Daza 45 Jan 09, 2023
Code release for the paper “Worldsheet Wrapping the World in a 3D Sheet for View Synthesis from a Single Image”, ICCV 2021.

Worldsheet: Wrapping the World in a 3D Sheet for View Synthesis from a Single Image This repository contains the code for the following paper: R. Hu,

Meta Research 37 Jan 04, 2023
Joint Discriminative and Generative Learning for Person Re-identification. CVPR'19 (Oral)

Joint Discriminative and Generative Learning for Person Re-identification [Project] [Paper] [YouTube] [Bilibili] [Poster] [Supp] Joint Discriminative

NVIDIA Research Projects 1.2k Dec 30, 2022
ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm

ManipulaTHOR: A Framework for Visual Object Manipulation Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric Kolve, Aniruddha

AI2 65 Dec 30, 2022
Image to Image translation, image generataton, few shot learning

Semi-supervised Learning for Few-shot Image-to-Image Translation [paper] Abstract: In the last few years, unpaired image-to-image translation has witn

yaxingwang 49 Nov 18, 2022
The project is an official implementation of our paper "3D Human Pose Estimation with Spatial and Temporal Transformers".

3D Human Pose Estimation with Spatial and Temporal Transformers This repo is the official implementation for 3D Human Pose Estimation with Spatial and

Ce Zheng 363 Dec 28, 2022
Image marine sea litter prediction Shiny

MARLITE Shiny app for floating marine litter detection in aerial images. This directory contains the instructions and software needed to install the S

19 Dec 22, 2022
TorchXRayVision: A library of chest X-ray datasets and models.

torchxrayvision A library for chest X-ray datasets and models. Including pre-trained models. ( 🎬 promo video about the project) Motivation: While the

Machine Learning and Medicine Lab 575 Jan 08, 2023
Python library to receive live stream events like comments and gifts in realtime from TikTok LIVE.

TikTokLive A python library to connect to and read events from TikTok's LIVE service A python library to receive and decode livestream events such as

Isaac Kogan 277 Dec 23, 2022
Differentiable architecture search for convolutional and recurrent networks

Differentiable Architecture Search Code accompanying the paper DARTS: Differentiable Architecture Search Hanxiao Liu, Karen Simonyan, Yiming Yang. arX

Hanxiao Liu 3.7k Jan 09, 2023
AFLFast (extends AFL with Power Schedules)

AFLFast Power schedules implemented by Marcel Böhme [email protected]

Marcel Böhme 380 Jan 03, 2023