Code of paper Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification.

Overview

Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification

We provide the codes for reproducing result of our paper Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification.

Installation

  1. Basic environments: python3.6, pytorch1.8.0, cuda11.1.

  2. Our codes structure is based on Torchreid. (More details can be found in link: https://github.com/KaiyangZhou/deep-person-reid , you can download the packages according to Torchreid requirements.)

# create environment
cd AAAI2022_IEEE/
conda create --name ieeeReid python=3.6
conda activate ieeeReid

# install dependencies
# make sure `which python` and `which pip` point to the correct path
pip install -r requirements.txt

# install torch and torchvision (select the proper cuda version to suit your machine)
conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge

# install torchreid (don't need to re-build it if you modify the source code)
python setup.py develop

Get start

  1. You can use the setting in im_r50_softmax_256x128_amsgrad_RGBNT_ieee_part_margin.yaml to get the results of full IEEE.

    python ./scripts/mainMultiModal.py --config-file ./configs/im_r50_softmax_256x128_amsgrad_RGBNT_ieee_part_margin.yaml --seed 40
  2. You can run other methods by using following configuration file:

    # MLFN
    ./configs/im_r50_softmax_256x128_amsgrad_RGBNT_mlfn.yaml
    
    # HACNN
    ./configs/im_r50_softmax_256x128_amsgrad_RGBNT_hacnn.yaml
    
    # OSNet
    ./configs/im_r50_softmax_256x128_amsgrad_RGBNT_osnet.yaml
    
    # HAMNet
    ./configs/im_r50_softmax_256x128_amsgrad_RGBNT_hamnet.yaml
    
    # PFNet
    ./configs/im_r50_softmax_256x128_amsgrad_RGBNT_hamnet.yaml
    
    # full IEEE
    ./configs/im_r50_softmax_256x128_amsgrad_RGBNT_ieee_part_margin.yaml

Details

  1. The details of our Cross-modal Interacting Module (CIM) and Relation-based Embedding Module (REM) can be found in .\torchreid\models\ieee3modalPart.py. The design of Multi-modal Margin Loss(3M loss) can be found in .\torchreid\losses\multi_modal_margin_loss_new.py.

  2. Ablation study settings.

    You can control these two modules and the loss by change the corresponding codes.

    1. Cross-modal Interacting Module (CIM) and Relation-based Embedding Module (REM)
    # change the code in .\torchreid\models\ieee3modalPart.py
    
    class IEEE3modalPart(nn.Module):
        def __init__(···
        ):
            modal_number = 3
            fc_dims = [128]
            pooling_dims = 768
            super(IEEE3modalPart, self).__init__()
            self.loss = loss
            self.parts = 6
            
            self.backbone = nn.ModuleList(···
            )
    		
    		  # using Cross-modal Interacting Module (CIM)
            self.interaction = True
            # using channel attention in CIM
            self.attention = True
            
            # using Relation-based Embedding Module (REM)
            self.using_REM = True
            
            ···
    1. Multi-modal Margin Loss(3M loss)
    # change the code in .\configs\your_config_file.yaml
    
    # using Multi-modal Margin Loss(3M loss), you can change the margin by modify the parameter of "ieee_margin".
    ···
    loss:
      name: 'margin'
      softmax:
        label_smooth: True
      ieee_margin: 1
      weight_m: 1.0
      weight_x: 1.0
    ···
    
    # using only CE loss
    ···
    loss:
      name: 'softmax'
      softmax:
        label_smooth: True
      weight_x: 1.0
    ···
Wider-Yolo Kütüphanesi ile Yüz Tespit Uygulamanı Yap

WIDER-YOLO : Yüz Tespit Uygulaması Yap Wider-Yolo Kütüphanesinin Kullanımı 1. Wider Face Veri Setini İndir Train Dataset Val Dataset Test Dataset Not:

Kadir Nar 6 Aug 22, 2022
Código de um painel de auto atendimento feito em Python.

Painel de Auto-Atendimento O intuito desse projeto era fazer em Python um programa que simulasse um painel de auto atendimento, no maior estilo Mac Do

Calebe Alves Evangelista 2 Nov 09, 2022
Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021)

Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021) PyTorch implementation of Learning RAW-to-sRGB Mappings with Inaccurat

Zhilu Zhang 53 Dec 20, 2022
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

250 Jan 08, 2023
SafePicking: Learning Safe Object Extraction via Object-Level Mapping, ICRA 2022

SafePicking Learning Safe Object Extraction via Object-Level Mapping Kentaro Wad

Kentaro Wada 49 Oct 24, 2022
Interpretable-contrastive-word-mover-s-embedding

Interpretable-contrastive-word-mover-s-embedding Paper Datasets Here is a Dropbox link to the datasets used in the paper: https://www.dropbox.com/sh/n

0 Nov 02, 2021
Repository for the AugmentedPCA Python package.

Overview This Python package provides implementations of Augmented Principal Component Analysis (AugmentedPCA) - a family of linear factor models that

Billy Carson 6 Dec 07, 2022
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
Fast Axiomatic Attribution for Neural Networks (NeurIPS*2021)

Fast Axiomatic Attribution for Neural Networks This is the official repository accompanying the NeurIPS 2021 paper: R. Hesse, S. Schaub-Meyer, and S.

Visual Inference Lab @TU Darmstadt 11 Nov 21, 2022
Torch implementation of SegNet and deconvolutional network

Torch implementation of SegNet and deconvolutional network

Fedor Chervinskii 5 Jul 17, 2020
Breast cancer is been classified into benign tumour and malignant tumour.

Breast cancer is been classified into benign tumour and malignant tumour. Logistic regression is applied in this model.

1 Feb 04, 2022
thundernet ncnn

MMDetection_Lite 基于mmdetection 实现一些轻量级检测模型,安装方式和mmdeteciton相同 voc0712 voc 0712训练 voc2007测试 coco预训练 thundernet_voc_shufflenetv2_1.5 input shape mAP 320

DayBreak 39 Dec 05, 2022
Machine Learning Privacy Meter: A tool to quantify the privacy risks of machine learning models with respect to inference attacks, notably membership inference attacks

ML Privacy Meter Machine learning is playing a central role in automated decision making in a wide range of organization and service providers. The da

Data Privacy and Trustworthy Machine Learning Research Lab 357 Jan 06, 2023
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).

PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR)

Ilya Kostrikov 3k Dec 31, 2022
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
Official code of CVPR 2021's PLOP: Learning without Forgetting for Continual Semantic Segmentation

PLOP: Learning without Forgetting for Continual Semantic Segmentation This repository contains all of our code. It is a modified version of Cermelli e

Arthur Douillard 116 Dec 14, 2022
Contrastively Disentangled Sequential Variational Audoencoder

Contrastively Disentangled Sequential Variational Audoencoder (C-DSVAE) Overview This is the implementation for our C-DSVAE, a novel self-supervised d

Junwen Bai 35 Dec 24, 2022
Implementation of CVPR 2020 Dual Super-Resolution Learning for Semantic Segmentation

Dual super-resolution learning for semantic segmentation 2021-01-02 Subpixel Update Happy new year! The 2020-12-29 update of SISR with subpixel conv p

Sam 79 Nov 24, 2022
Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.

Evidential Deep Learning for Guided Molecular Property Prediction and Discovery Ava Soleimany*, Alexander Amini*, Samuel Goldman*, Daniela Rus, Sangee

Alexander Amini 75 Dec 15, 2022
Replication Code for "Self-Supervised Bug Detection and Repair" NeurIPS 2021

Self-Supervised Bug Detection and Repair This is the reference code to replicate the research in Self-Supervised Bug Detection and Repair in NeurIPS 2

Microsoft 85 Dec 24, 2022