Deep Implicit Moving Least-Squares Functions for 3D Reconstruction

Related tags

Deep LearningDeepMLS
Overview

DeepMLS: Deep Implicit Moving Least-Squares Functions for 3D Reconstruction

This repository contains the implementation of the paper:

Deep Implicit Moving Least-Squares Functions for 3D Reconstruction [arXiv]
Shi-Lin Liu, Hao-Xiang Guo, Hao Pan, Pengshuai Wang, Xin Tong, Yang Liu.

If you find our code or paper useful, please consider citing

@inproceedings{Liu2021MLS,
 author =  {Shi-Lin Liu, Hao-Xiang Guo, Hao Pan, Pengshuai Wang, Xin Tong, Yang Liu},
 title = {Deep Implicit Moving Least-Squares Functions for 3D Reconstruction},
 year = {2021}}

Installation

First you have to make sure that you have all dependencies in place. The simplest way to do so, is to use anaconda.

You can create an anaconda environment called deep_mls using

conda env create -f environment.yml
conda activate deep_mls

Next, a few customized tensorflow modules should be installed:

O-CNN Module

O-CNN is an octree-based convolution module, please take the following steps to install:

cd Octree && git clone https://github.com/microsoft/O-CNN/
cd O-CNN/octree/external && git clone --recursive https://github.com/wang-ps/octree-ext.git
cd .. && mkdir build && cd build
cmake ..  && cmake --build . --config Release
export PATH=`pwd`:$PATH
cd ../../tensorflow/libs && python build.py --cuda /usr/local/cuda-10.0
cp libocnn.so ../../../ocnn-tf/libs

Efficient Neighbor Searching Ops

Neighbor searching is intensively used in DeepMLS. For efficiency reasons, we provide several customized neighbor searching ops:

cd points3d-tf/points3d
bash build.sh

In this step, some errors like this may occur:

tensorflow_core/include/tensorflow/core/util/gpu_kernel_helper.h:22:10: fatal error: third_party/gpus/cuda/include/cuda_fp16.h: No such file or directory
 #include "third_party/gpus/cuda/include/cuda_fp16.h"

For solving this, please refer to issue.
Basically, We need to edit the codes in tensorflow framework, please modify

#include "third_party/gpus/cuda/include/cuda_fp16.h"

in "site-packages/tensorflow_core/include/tensorflow/core/util/gpu_kernel_helper.h" to

#include "cuda_fp16.h"

and

#include "third_party/gpus/cuda/include/cuComplex.h"
#include "third_party/gpus/cuda/include/cuda.h"

in "site-packages/tensorflow_core/include/tensorflow/core/util/gpu_device_functions.h" to

#include "cuComplex.h"
#include "cuda.h"

Modified Marching Cubes Module

We have modified the PyMCubes to get a more efficient marching cubes method for extract 0-isosurface defined by mls points.
To install:

git clone https://github.com/Andy97/PyMCubes
cd PyMCubes && python setup.py install

Datasets

Preprocessed ShapeNet Dataset

We have provided the processed tfrecords file. This can be used directly.

Our training data is available now! (total 130G+)
Please download all zip files for extraction.
ShapeNet_points_all_train.zip.001
ShapeNet_points_all_train.zip.002
ShapeNet_points_all_train.zip.003
After extraction, please modify the "train_data" field in experiment config json file with this tfrecords name.

Build the Dataset

If you want to build the dataset from your own data, please follow:

Step 1: Get Watertight Meshes

To acquire a watertight mesh, we first preprocess each mesh follow the preprocess steps of Occupancy Networks.

Step 2: Get the groundtruth sdf pair

From step 1, we have already gotten the watertight version of each model. Then, we utilize OpenVDB library to get the sdf values and gradients for training.
For details, please refer to here.

Usage

Inference using pre-trained model

We have provided pretrained models which can be used to inference:

#first download the pretrained models
cd Pretrained && python download_models.py
#then we can use either of the pretrained model to do the inference
cd .. && python DeepMLS_Generation.py Pretrained/Config_d7_1p_pretrained.json --test

The input for the inference is defined in here.
Your can replace it with other point cloud files in examples or your own data.

Extract Isosurface from MLS Points

After inference, now we have network predicted mls points. The next step is to extract the surface:

python mls_marching_cubes.py --i examples/d0fa70e45dee680fa45b742ddc5add59.ply.xyz --o examples/d0fa70e45dee680fa45b742ddc5add59_mc.obj --scale

Training

Our code supports single and multiple gpu training. For details, please refer to the config json file.

python DeepMLS_Generation.py examples/Config_g2_bs32_1p_d6.json

Evaluation

For evaluation of results, ConvONet has provided a great script. Please refer to here.

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Payphone 8 Nov 21, 2022
Official implementation of FCL-taco2: Fast, Controllable and Lightweight version of Tacotron2 @ ICASSP 2021

FCL-Taco2: Towards Fast, Controllable and Lightweight Text-to-Speech synthesis (ICASSP 2021) Paper | Demo Block diagram of FCL-taco2, where the decode

Disong Wang 39 Sep 28, 2022
Smart edu-autobooking - Johnson @ DMI-UNICT study room self-booking system

smart_edu-autobooking Sistema di autoprenotazione per l'aula studio [email protected]

Davide Carnemolla 17 Jun 20, 2022
This project uses reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can learn to read tape. The project is dedicated to hero in life great Jesse Livermore.

Reinforcement-trading This project uses Reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can

Deepender Singla 1.4k Dec 22, 2022
This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled Time Series presented at Causal Analysis Workshop 2021.

signed-area-causal-inference This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled

Will Glad 1 Mar 11, 2022
Deep ViT Features as Dense Visual Descriptors

dino-vit-features [paper] [project page] Official implementation of the paper "Deep ViT Features as Dense Visual Descriptors". We demonstrate the effe

Shir Amir 113 Dec 24, 2022
A simple python program that can be used to implement user authentication tokens into your program...

token-generator A simple python module that can be used by developers to implement user authentication tokens into your program... code examples creat

octo 6 Apr 18, 2022
(NeurIPS 2021) Realistic Evaluation of Transductive Few-Shot Learning

Realistic evaluation of transductive few-shot learning Introduction This repo contains the code for our NeurIPS 2021 submitted paper "Realistic evalua

Olivier Veilleux 14 Dec 13, 2022
PyTorch reimplementation of the Smooth ReLU activation function proposed in the paper "Real World Large Scale Recommendation Systems Reproducibility and Smooth Activations" [arXiv 2022].

Smooth ReLU in PyTorch Unofficial PyTorch reimplementation of the Smooth ReLU (SmeLU) activation function proposed in the paper Real World Large Scale

Christoph Reich 10 Jan 02, 2023
Global-Local Context Network for Person Search

Global-Local Context Network for Person Search Abstract: Person search aims to jointly localize and identify a query person from natural, uncropped im

Peng Zheng 15 Oct 17, 2022
Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library.

SymEngine Python Wrappers Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library. Installation Pip See License section

136 Dec 28, 2022
Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit

streamlit-manim Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit Installation I had to install pango with sudo apt-get

Adrien Treuille 6 Aug 03, 2022
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022
Brain tumor detection using CNN (InceptionResNetV2 Model)

Brain-Tumor-Detection Building a detection model using a convolutional neural network in Tensorflow & Keras. Used brain MRI images. InceptionResNetV2

1 Feb 13, 2022
Python implementation of O-OFDMNet, a deep learning-based optical OFDM system,

O-OFDMNet This includes Python implementation of O-OFDMNet, a deep learning-based optical OFDM system, which uses neural networks for signal processin

Thien Luong 4 Sep 09, 2022
A list of all named GANs!

The GAN Zoo Every week, new GAN papers are coming out and it's hard to keep track of them all, not to mention the incredibly creative ways in which re

Avinash Hindupur 12.9k Jan 08, 2023
[ICCV2021] Learning to Track Objects from Unlabeled Videos

Unsupervised Single Object Tracking (USOT) 🌿 Learning to Track Objects from Unlabeled Videos Jilai Zheng, Chao Ma, Houwen Peng and Xiaokang Yang 2021

53 Dec 28, 2022
Code repository for Self-supervised Structure-sensitive Learning, CVPR'17

Self-supervised Structure-sensitive Learning (SSL) Ke Gong, Xiaodan Liang, Xiaohui Shen, Liang Lin, "Look into Person: Self-supervised Structure-sensi

Clay Gong 219 Dec 29, 2022
Data manipulation and transformation for audio signal processing, powered by PyTorch

torchaudio: an audio library for PyTorch The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the

1.9k Dec 28, 2022
Pytorch implementation of set transformer

set_transformer Official PyTorch implementation of the paper Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks .

Juho Lee 410 Jan 06, 2023