mmfewshot is an open source few shot learning toolbox based on PyTorch

Overview

Introduction

English | 简体中文

Documentation actions codecov PyPI LICENSE Average time to resolve an issue Percentage of issues still open

mmfewshot is an open source few shot learning toolbox based on PyTorch. It is a part of the OpenMMLab project.

The master branch works with PyTorch 1.5+. The compatibility to earlier versions of PyTorch is not fully tested.

Documentation: https://mmfewshot.readthedocs.io/en/latest/.

Major features

  • Support multiple tasks in Few Shot Learning

    MMFewShot provides unified implementation and evaluation of few shot classification and detection.

  • Modular Design

    We decompose the few shot learning framework into different components, which makes it much easy and flexible to build a new model by combining different modules.

  • Strong baseline and State of the art

    The toolbox provides strong baselines and state-of-the-art methods in few shot classification and detection.

License

This project is released under the Apache 2.0 license.

Model Zoo

Supported algorithms:

classification
Detection

Changelog

Installation

Please refer to install.md for installation of mmfewshot.

Getting Started

Please see getting_started.md for the basic usage of mmfewshot.

Citation

If you find this project useful in your research, please consider cite:

@misc{mmfewshot2021,
    title={OpenMMLab Few Shot Learning Toolbox and Benchmark},
    author={mmfewshot Contributors},
    howpublished = {\url{https://github.com/open-mmlab/mmfewshot}},
    year={2021}
}

Contributing

We appreciate all contributions to improve mmfewshot. Please refer to CONTRIBUTING.md in MMFewShot for the contributing guideline.

Acknowledgement

mmfewshot is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors who implement their methods or add new features, as well as users who give valuable feedbacks. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new methods.

Projects in OpenMMLab

  • MMCV: OpenMMLab foundational library for computer vision.
  • MIM: MIM Installs OpenMMLab Packages.
  • MMClassification: OpenMMLab image classification toolbox and benchmark.
  • MMDetection: OpenMMLab detection toolbox and benchmark.
  • MMDetection3D: OpenMMLab's next-generation platform for general 3D object detection.
  • MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark.
  • MMAction2: OpenMMLab's next-generation action understanding toolbox and benchmark.
  • MMTracking: OpenMMLab video perception toolbox and benchmark.
  • MMPose: OpenMMLab pose estimation toolbox and benchmark.
  • MMEditing: OpenMMLab image and video editing toolbox.
  • MMOCR: A Comprehensive Toolbox for Text Detection, Recognition and Understanding.
  • MMGeneration: OpenMMLab image and video generative models toolbox.
  • MMFlow: OpenMMLab optical flow toolbox and benchmark.
  • MMFewShot: OpenMMLab FewShot Learning Toolbox and Benchmark.
Comments
  • about result reimplementation of meta-rcnn

    about result reimplementation of meta-rcnn

    When trying to reproduce results of meta-rcnn and TFA, under 1 shot setting of split1, I find that reproduced results of meta-rcnn is much higher, which is confusing.In paper of meta-rcnn(this 19.9 is the result i want to get): image

    In paper of TFA: image

    Result in paper shows that result of split1 under 1 shot setting is 19.9. But my results is much higher: base training : mAP is 76.2 finetunning : all class is 47.40, novel class is 38.80, base class is 50.53 Which is much higher than results in paper. This is confusing. Besides, in the README.md of meta-rcnn, results are even higher: image

    under split1 1 shot setting, the results of TFA I get is 40.4 which is basically the same as the paper report.

    Could you please kindly answer my questions?

    opened by JulioZhao97 8
  • confused about `samples_per_gpu` of meta_dataloader

    confused about `samples_per_gpu` of meta_dataloader

    https://github.com/open-mmlab/mmfewshot/blob/486c8c2fd7929880eab0dfcd73a3dd3a512ddfbe/configs/detection/base/datasets/nway_kshot/base_voc.py#L106

    Hi, thanks for your great work in fsod. I want to know why the value of samples_per_gpu is not 15 instead of 16 for voc base training. Hope you can help me.

    opened by Wei-i 8
  • coco dataset?

    coco dataset?

    我的coco数据目录是这样的: data --coco ----annotations ----train2014 ----val2014 --few_shot_ann ----coco ------benchmark_10shot -------- ... 当我运行fsce下的coco预训练config时,会报错:no such file or directory: 'data/few_shot_ann/coco/annotaions/train.json' 请问这个train.json是哪里来的,预训练的标签不是应该调用coco文件夹下的annotations吗? 另外我在data preparation找到一个trainvalno5k.json和5k.json,请问是这两个json文件吗? 期待您的回答!

    opened by kike-0304 6
  • RuntimeError: The expanded size of the tensor (21) must match the existing size (54) at non-singleton dimension 0.  Target sizes: [21, 1024].  Tensor sizes: [54, 1024]

    RuntimeError: The expanded size of the tensor (21) must match the existing size (54) at non-singleton dimension 0. Target sizes: [21, 1024]. Tensor sizes: [54, 1024]

    Traceback (most recent call last): File "/home/lbc/miniconda3/envs/mmfewshot/lib/python3.7/runpy.py", line 193, in _run_module_as_main "__main__", mod_spec) File "/home/lbc/miniconda3/envs/mmfewshot/lib/python3.7/runpy.py", line 85, in _run_code exec(code, run_globals) File "/home/lbc/mmfewshot-main/tools/detection/misc/initialize_bbox_head.py", line 289, in <module> main() File "/home/lbc/mmfewshot-main/tools/detection/misc/initialize_bbox_head.py", line 278, in main args) File "/home/lbc/mmfewshot-main/tools/detection/misc/initialize_bbox_head.py", line 169, in random_init_checkpoint new_weight[:prev_cls] = pretrained_weight[:prev_cls] RuntimeError: The expanded size of the tensor (21) must match the existing size (54) at non-singleton dimension 0. Target sizes: [21, 1024]. Tensor sizes: [54, 1024]

    The process of fsce on my own coco format datasets is:

    1. Base Training : ckpt(step1)
    2. step two: ues the best val pth of step 1 for train? python3.7 -m tools.detection.misc.initialize_bbox_head --src1 ./work_dirs/fsce_r101_fpn_coco_base-training/best_bbox_mAP_iter_105000.pth --method random_init --save-dir ./work_dirs/fsce_r101_fpn_coco-split1_base-training
    opened by Williamlizl 6
  • Fix tabular printing of dataset information

    Fix tabular printing of dataset information

    Motivation

    When the length of the last row_data is less than 10 and greater than 0, the row_data will not be printed

    Modification

    When the last row_data is not empty, add to table_data

    opened by LiangYang666 4
  • Few-shot instead of one-shot in demo inference

    Few-shot instead of one-shot in demo inference

    Currently, the demo script (classification) takes only one sample in the support set. It uses the process_support_images() method to forward the support set. How to modify this in order to allow for more than one sample in the support set?

    One idea could be to place another set of support images in a different folder and then forward that as well. Then the model.before_forward_support() method can be modified if it resets the features. For e.g. for meta_baseline_head, it is resetting saved features.

    Then (again for meta_baseline), meta_baseline_head.before_forward_query would also have to be modified since it is replacing the self.mean_support_feats with the mean of the new support set.

    Would these two changes in this case be enough to adapt for a few-shot instead of a one-shot inference?

    opened by rlleshi 4
  • How does it work

    How does it work

    According to the document, the following errors occur during training. I don't know how to solve them. Has anyone encountered them. TypeError: init() got an unexpected keyword argument 'persistent_workers'

    opened by isJunCheng 3
  • Question about the training of MatchingNetwork

    Question about the training of MatchingNetwork

    Hi, Great Job.

    I have some questions about the training process of the matching network(classification)

    • In this line, https://github.com/open-mmlab/mmfewshot/blob/31583cccb8ef870c9e688b1dc259263b73e58884/configs/classification/matching_net/mini_imagenet/matching-net_conv4_1xb105_mini-imagenet_5way-1shot.py?_pjax=%23js-repo-pjax-container%2C%20div%5Bitemtype%3D%22http%3A%2F%2Fschema.org%2FSoftwareSourceCode%22%5D%20main%2C%20%5Bdata-pjax-container%5D#L28 You use num_shots=5 for training 5-way-1-shot, is this a bug?
    • The batch size shown in the result table is 64, I would like to know whether this number is the training batch size or test batch size?
    • How many gaps between the meta-val and meta-test split in your experiment?
      • In the log of matching_net 5-way-1-shot, the max accuracy is about 51%, while the test result is 53%, does it means there exists ~2 points between two sets?

    Thanks, Best

    opened by tonysy 3
  • meta_test_head is None on demo

    meta_test_head is None on demo

    The error occurs when running demo_metric_classifier_1shot_inference with a custom trained NegMargin model. The meta_test_head is None. Testing the model with dist_test works as expected though. I am not sure why it didn't save the meta test head. A comment here says that it is only built and run on testing. I am not sure what that means though.

    The model config is the same as the standard in other config files:

    model = dict(
        type='NegMargin',
        backbone=dict(type='Conv4'),
        head=dict(
            type='NegMarginHead',
            num_classes=6,
            in_channels=1600,
            metric_type='cosine',
            margin=-0.01,
            temperature=10.0),
        meta_test_head=dict(
            type='NegMarginHead',
            num_classes=6,
            in_channels=1600,
            metric_type='cosine',
            margin=0.0,
            temperature=5.0))
    

    Otherwise, the config file itself is similar to other neg_margin config files for the cube dataset.

    opened by rlleshi 3
  • Don't find the “frozen_parameters” parameter in the relevant source code

    Don't find the “frozen_parameters” parameter in the relevant source code

    I found that the “frozen_parameters” parameter is used in many detection models, but I have not found where this parameter is used in the relevant source code. Which part of the source code should I see?

    opened by wwwbq 2
  • FewShotCocoDefaultDataset中coco_benchmark的ann_file路径无法自定义

    FewShotCocoDefaultDataset中coco_benchmark的ann_file路径无法自定义

    在mmfewshot/detection/datasets/coco.py/FewShotCocoDefaultDataset 中的coco_benchmark固定了数据集路径为f'data/few_shot_ann/coco/benchmark_{shot}shot/full_box_{shot}shot_{class_name}_trainval.json'。但是我的few_shot_ann路径和上面不同,并且FewShotCocoDefaultDataset没有办法接受数据集路径的参数,希望可以增加此参数

    opened by wwwbq 2
  • 运行mpsr第一阶段报错~

    运行mpsr第一阶段报错~

    Traceback (most recent call last): File "/root/mmfewshot/./tools/detection/train.py", line 236, in main() File "/root/mmfewshot/./tools/detection/train.py", line 225, in main train_detector( File "/root/mmfewshot/mmfewshot/detection/apis/train.py", line 48, in train_detector data_loaders = [build_dataloader(ds, **train_loader_cfg) for ds in dataset] File "/root/mmfewshot/mmfewshot/detection/apis/train.py", line 48, in data_loaders = [build_dataloader(ds, **train_loader_cfg) for ds in dataset] File "/root/mmfewshot/mmfewshot/detection/datasets/builder.py", line 311, in build_dataloader data_loader = TwoBranchDataloader( TypeError: init() got an unexpected keyword argument 'persistent_workers' Killing subprocess 9272 Traceback (most recent call last): File "/opt/conda/envs/pytorch1.8/lib/python3.9/runpy.py", line 197, in _run_module_as_main return _run_code(code, main_globals, None, File "/opt/conda/envs/pytorch1.8/lib/python3.9/runpy.py", line 87, in _run_code exec(code, run_globals) File "/opt/conda/envs/pytorch1.8/lib/python3.9/site-packages/torch/distributed/launch.py", line 340, in main() File "/opt/conda/envs/pytorch1.8/lib/python3.9/site-packages/torch/distributed/launch.py", line 326, in main sigkill_handler(signal.SIGTERM, None) # not coming back File "/opt/conda/envs/pytorch1.8/lib/python3.9/site-packages/torch/distributed/launch.py", line 301, in sigkill_handler raise subprocess.CalledProcessError(returncode=last_return_code, cmd=cmd) subprocess.CalledProcessError: Command '['/opt/conda/envs/pytorch1.8/bin/python', '-u', './tools/detection/train.py', '--local_rank=0', 'configs/detection/mpsr/voc/split1/mpsr_r101_fpn_2xb2_voc-split1_base-training.py', '--launcher', 'pytorch']' returned non-zero exit status 1.

    opened by DaDogs 1
  • Where should I put my few shot dataset?

    Where should I put my few shot dataset?

    Since few shot dataset is just for finetuning the model and the test.py won't save the change of the model, where should I put my fewshot dataset? training set or validation set? In that way, I could use the pth file to predict my images in the demo.py?

    opened by winnie9802 0
  • The initialization is blocked on building the models in FSClassification

    The initialization is blocked on building the models in FSClassification

    We meet problem when training on classification models. We test several times, the code is blocked on this line of command in classification.api.train 截屏2022-10-15 下午12 31 58

    opened by jwfanDL 0
  • Request to add the ability to read tiff datasets

    Request to add the ability to read tiff datasets

    When I was studying the process of small sample learning, I came across tiff images in the data set. At this point, there is a problem with the dataset loading, would like to ask if you can add a tiff format read method.

    opened by Djn-swjtu 0
Releases(v0.1.0)
  • v0.1.0(Nov 24, 2021)

    Main Features

    • Support few shot classification and few shot detection.
    • For few shot classification, support fine-tune based methods (Baseline, Baseline++, NegMargin); metric-based methods (MatchingNet, ProtoNet, RelationNet, MetaBaseline); meta-learning based method (MAML).
    • For few shot detection, support fine-tune based methods (TFA, FSCE, MPSR); Meta-learning based methods (MetaRCNN, FsDetView, AttentionRPN).
    • Provide checkpoints and log files for all of the methods above.
    Source code(tar.gz)
    Source code(zip)
The code for Expectation-Maximization Attention Networks for Semantic Segmentation (ICCV'2019 Oral)

EMANet News The bug in loading the pretrained model is now fixed. I have updated the .pth. To use it, download it again. EMANet-101 gets 80.99 on the

Xia Li 李夏 663 Nov 30, 2022
Adversarial Graph Augmentation to Improve Graph Contrastive Learning

ADGCL : Adversarial Graph Augmentation to Improve Graph Contrastive Learning Introduction This repo contains the Pytorch [1] implementation of Adversa

susheel suresh 62 Nov 19, 2022
Implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

PRP Introduction This is the implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

yuanyao366 39 Dec 29, 2022
Fast RFC3339 compliant Python date-time library

udatetime: Fast RFC3339 compliant date-time library Handling date-times is a painful act because of the sheer endless amount of formats used by people

Simon Pirschel 235 Oct 25, 2022
FocusFace: Multi-task Contrastive Learning for Masked Face Recognition

FocusFace This is the official repository of "FocusFace: Multi-task Contrastive Learning for Masked Face Recognition" accepted at IEEE International C

Pedro Neto 21 Nov 17, 2022
Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification"

Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification" This is an end-to-end framework for accurate and robust left ventr

2 Jul 09, 2022
Official repository for the paper F, B, Alpha Matting

FBA Matting Official repository for the paper F, B, Alpha Matting. This paper and project is under heavy revision for peer reviewed publication, and s

Marco Forte 404 Jan 05, 2023
PoseViz – Multi-person, multi-camera 3D human pose visualization tool built using Mayavi.

PoseViz – 3D Human Pose Visualizer Multi-person, multi-camera 3D human pose visualization tool built using Mayavi. As used in MeTRAbs visualizations.

István Sárándi 79 Dec 30, 2022
Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

El Bruno 3 Mar 30, 2022
Neural Articulated Radiance Field

Neural Articulated Radiance Field NARF Neural Articulated Radiance Field Atsuhiro Noguchi, Xiao Sun, Stephen Lin, Tatsuya Harada ICCV 2021 [Paper] [Co

Atsuhiro Noguchi 144 Jan 03, 2023
Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020)

GraspNet Baseline Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020). [paper] [dataset] [API] [do

GraspNet 209 Dec 29, 2022
Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding

🍐 quince Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding 🍐 Installation $ git clone

Andrew Jesson 19 Jun 23, 2022
Data-Driven Operational Space Control for Adaptive and Robust Robot Manipulation

OSCAR Project Page | Paper This repository contains the codebase used in OSCAR: Data-Driven Operational Space Control for Adaptive and Robust Robot Ma

NVIDIA Research Projects 74 Dec 22, 2022
Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control

Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control Official implementation of: Cooperative multi-agent reinfor

0 Nov 16, 2021
MicRank is a Learning to Rank neural channel selection framework where a DNN is trained to rank microphone channels.

MicRank: Learning to Rank Microphones for Distant Speech Recognition Application Scenario Many applications nowadays envision the presence of multiple

Samuele Cornell 20 Nov 10, 2022
scikit-learn: machine learning in Python

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license. The project was started

scikit-learn 52.5k Jan 08, 2023
EMNLP'2021: SimCSE: Simple Contrastive Learning of Sentence Embeddings

SimCSE: Simple Contrastive Learning of Sentence Embeddings This repository contains the code and pre-trained models for our paper SimCSE: Simple Contr

Princeton Natural Language Processing 2.5k Dec 29, 2022
An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

Luna Yue Huang 41 Oct 29, 2022
Adversarial Learning for Modeling Human Motion

Adversarial Learning for Modeling Human Motion This repository contains the open source code which reproduces the results for the paper: Adversarial l

wangqi 6 Jun 15, 2021
MediaPipeのPythonパッケージのサンプルです。2020/12/11時点でPython実装のある4機能(Hands、Pose、Face Mesh、Holistic)について用意しています。

mediapipe-python-sample MediaPipeのPythonパッケージのサンプルです。 2020/12/11時点でPython実装のある以下4機能について用意しています。 Hands Pose Face Mesh Holistic Requirement mediapipe 0.

KazuhitoTakahashi 217 Dec 12, 2022