Evaluating deep transfer learning for whole-brain cognitive decoding

Overview

Evaluating deep transfer learning for whole-brain cognitive decoding

This README file contains the following sections:

Project description

This project provides two main packages (see src/) that allow to apply DeepLight (see below) to the task-fMRI data of the Human Connectome Project (HCP):

  • deeplight is a simple python package that provides easy access to two pre-trained DeepLight architectures (2D-DeepLight and 3D-DeepLight; see below), designed for cognitive decoding of whole-brain fMRI data. Both architecturs were pre-trained with the fMRI data of 400 individuals in six of the seven HCP experimental tasks (all tasks except for the working memory task, which we left out for testing purposes; click here for details on the HCP data).
  • hcprepis a simple python package that allows to easily download the HCP task-fMRI data in a preprocessed format via the Amazon Web Services (AWS) S3 storage system and to transform these data into the tensorflow records data format.

Repository organization

├── poetry.lock         <- Overview of project dependencies
├── pyproject.toml      <- Lists details of installed dependencies
├── README.md           <- This README file
├── .gitignore          <- Specifies files that git should ignore
|
├── scrips/
|    ├── decode.py      <- An example of how to decode fMRI data with `deeplight`
|    ├── download.py    <- An example of how to download the preprocessed HCP fMRI data with `hcprep`
|    ├── interpret.py   <- An example of how to interpret fMRI data with `deeplight`
|    └── preprocess.sh  <- An example of how to preprocess fMRI data with `hcprep`
|    └── train.py       <- An example of how to train with `hcprep`
|
└── src/
|    ├── deeplight/
|    |    └──           <- `deeplight` package
|    ├── hcprep/
|    |    └──           <- 'hcprep' package
|    ├── modules/
|    |    └──           <- 'modules' package
|    └── setup.py       <- Makes 'deeplight', `hcprep`, and `modules` pip-installable (pip install -e .)  

Installation

deeplight and hcprep are written for python 3.6 and require a working python environment running on your computer (we generally recommend pyenv for python version management).

First, clone and switch to this repository:

git clone https://github.com/athms/evaluating-deeplight-transfer.git
cd evaluating-deeplight-transfer

This project uses python poetry for dependency management. To install all required dependencies with poetry, run:

poetry install

To then install deeplight, hcprep, and modules in your poetry environment, run:

cd src/
poetry run pip3 install -e .

Packages

HCPrep

hcprep stores the HCP task-fMRI data data locally in the Brain Imaging Data Structure (BIDS) format.

To make fMRI data usable for DL analyses with TensorFlow, hcprep can clean the downloaded fMRI data and store these in the TFRecords data format.

Getting data access: To download the HCP task-fMRI data, you will need AWS access to the HCP public data directory. A detailed instruction can be found here. Make sure to safely store the ACCESS_KEY and SECRET_KEY; they are required to access the data via the AWS S3 storage system.

AWS configuration: Setup your local AWS client (as described here) and add the following profile to '~/.aws/config'

[profile hcp]
region=eu-central-1

Choose the region based on your location.

TFR data storage: hcprep stores the preprocessed fMRI data locally in TFRecords format, with one entry for each input fMRI volume of the data, each containing the following features:

  • volume: the flattened voxel activations with shape 91x109x91 (flattened over the X (91), Y (109), and Z (91) dimensions)
  • task_id, subject_id, run_id: numerical id of task, subject, and run
  • tr: TR of the volume in the underlying experimental task
  • state: numerical label of the cognive state associated with the volume within its task (e.g., [0,1,2,3] for the four cognitive states of the working memory task)
  • onehot: one-hot encoding of the state across all experimental tasks that are used for training (e.g., there are 20 cognitive tasks across the seven experimental tasks of the HCP; the four cognitive states of the working memory task could thus be mapped to the last four positions of the one-hot encoding, with indices [16: 0, 17: 1, 18: 2, 19: 3])

Note that hcprep also provides basic descriptive information about the HCP task-fMRI data in info.basics:

hcp_info = hcprep.info.basics()

basics contains the following information:

  • tasks: names of all HCP experimental tasks ('EMOTION', 'GAMBLING', 'LANGUAGE', 'MOTOR', 'RELATIONAL', 'SOCIAL', 'WM')
  • subjects: dictionary containing 1000 subject IDs for each task
  • runs: run IDs ('LR', 'RL')
  • t_r: repetition time of the fMRI data in seconds (0.72)
  • states_per_task: dictionary containing the label of each cognitive state of each task
  • onehot_idx_per_task: index that is used to assign cognitive states of each task to the onehotencoding of the TFR-files (see onehot above)

For further details on the experimental tasks and their cognitive states, click here.

DeepLight

deeplight implements two DeepLight architectures ("2D" and "3D"), which can be accessed as deeplight.two (2D) and deeplight.three (3D).

Importantly, both DeepLight architectures operate on the level of individual whole-brain fMRI volumes (e.g., individual TRs).

2D-DeepLight: A whole-brain fMRI volume is first sliced into a sequence of axial 2D-images (from bottom-to-top). These images are passed to a DL model, consisting of a 2D-convolutional feature extractor as well as an LSTM unit and output layer. First, the 2D-convolutional feature extractor reduces the dimensionality of the axial brain images through a sequence of 2D-convolution layers. The resulting sequence of higher-level slice representations is then fed to a bi-directional LSTM, modeling the spatial dependencies of brain activity within and across brain slices. Lastly, 2D-DeepLight outputs a decoding decision about the cognitive state underlying the fMRI volume, through a softmax output layer with one output unit per cognitive state in the data.

3D-DeepLight: The whole-brain fMRI volume is passed to a 3D-convolutional feature extractor, consisting of a sequence of twelve 3D-convolution layers. The 3D-convolutional feature extractor directly projects the fMRI volume into a higher-level, but lower dimensional, representation of whole-brain activity, without the need of an LSTM. To make a decoding decision, 3D-DeepLight utilizes an output layer that is composed of a 1D- convolution and global average pooling layer as well as a softmax activation function. The 1D-convolution layer maps the higher-level representation of whole-brain activity of the 3D-convolutional feature extractor to one representation for each cognitive state in the data, while the global average pooling layer and softmax function then reduce these to a decoding decision.

To interpret the decoding decisions of the two DeepLight architectures, relating their decoding decisions to the fMRI data, deeplight makes use of the LRP technique. The LRP technique decomposes individual decoding decisions of a DL model into the contributions of the individual input features (here individual voxel activities) to these decisions.

Both deeplight architectures implement basic fit, decode, and interpret methods, next to other functionalities. For details on how to {train, decode, interpret} with deeplight, see scripts/.

For further methdological details regarding the two DeepLight architectures, see the upcoming preprint.

Note that we currently recommend to run any applications of interpret with 2D-DeepLight on CPU instead of GPU, due to its high memory demand (assuming that your available CPU memory is larger than your available GPU memory). This switch can be made by setting the environment variable export CUDA_VISIBLE_DEVICES="". We are currently working on reducing the overall memory demand of interpret with 2D-DeepLight and will push a code update soon.

Modules

modules is a fork of the modules module from interprettensor, which deeplight uses to build the 2D-DeepLight architecture. Note that modules is licensed differently from the other python packages in this repository (see modules/LICENSE).

Basic usage

You can find a set of example python scripts in scripts/, which illustrate how to download and preprocess task-fMRI data from the Human Connectome Project with hcprep and how to {train on, decode, interpret} fMRI data with the two DeepLight architectures of deeplight.

You can run individual scripts in your poetryenvironment with:

cd scripts/
poetry run python <SCRIPT NAME>
Owner
Armin Thomas
Ram and Vijay Shriram Data Science Fellow at Stanford Data Science
Armin Thomas
(IEEE TIP 2021) Regularized Densely-connected Pyramid Network for Salient Instance Segmentation

RDPNet IEEE TIP 2021: Regularized Densely-connected Pyramid Network for Salient Instance Segmentation PyTorch training and testing code are available.

Yu-Huan Wu 41 Oct 21, 2022
OMNIVORE is a single vision model for many different visual modalities

Omnivore: A Single Model for Many Visual Modalities [paper][website] OMNIVORE is a single vision model for many different visual modalities. It learns

Meta Research 451 Dec 27, 2022
Applications using the GTN library and code to reproduce experiments in "Differentiable Weighted Finite-State Transducers"

gtn_applications An applications library using GTN. Current examples include: Offline handwriting recognition Automatic speech recognition Installing

Facebook Research 68 Dec 29, 2022
Source Code for AAAI 2022 paper "Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching"

Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching This repository is an official implementation of

HKUST-KnowComp 13 Sep 08, 2022
Equivariant GNN for the prediction of atomic multipoles up to quadrupoles.

Equivariant Graph Neural Network for Atomic Multipoles Description Repository for the Model used in the publication 'Learning Atomic Multipoles: Predi

16 Nov 22, 2022
Codecov coverage standard for Python

Python-Standard Last Updated: 01/07/22 00:09:25 What is this? This is a Python application, with basic unit tests, for which coverage is uploaded to C

Codecov 10 Nov 04, 2022
Code for the USENIX 2017 paper: kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels Blazing fast x86-64 VM kernel fuzzing framework with performant VM reloads for Linux, MacOS an

Chair for Sys­tems Se­cu­ri­ty 541 Nov 27, 2022
Machine Learning automation and tracking

The Open-Source MLOps Orchestration Framework MLRun is an open-source MLOps framework that offers an integrative approach to managing your machine-lea

873 Jan 04, 2023
《Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching》(CVPR 2020)

This contains the codes for cross-view geo-localization method described in: Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching, CVPR2020.

41 Oct 27, 2022
Author Disambiguation using Knowledge Graph Embeddings with Literals

Author Name Disambiguation with Knowledge Graph Embeddings using Literals This is the repository for the master thesis project on Knowledge Graph Embe

12 Oct 19, 2022
Scenic: A Jax Library for Computer Vision and Beyond

Scenic Scenic is a codebase with a focus on research around attention-based models for computer vision. Scenic has been successfully used to develop c

Google Research 1.6k Dec 27, 2022
[CVPR 2022] Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels

Using Unreliable Pseudo Labels Official PyTorch implementation of Semi-Supervised Semantic Segmentation Using Unreliable Pseudo Labels, CVPR 2022. Ple

Haochen Wang 268 Dec 24, 2022
Clustering with variational Bayes and population Monte Carlo

pypmc pypmc is a python package focusing on adaptive importance sampling. It can be used for integration and sampling from a user-defined target densi

45 Feb 06, 2022
wmctrl ported to Python Ctypes

work in progress wmctrl is a command that can be used to interact with an X Window manager that is compatible with the EWMH/NetWM specification. wmctr

Iyad Ahmed 22 Dec 31, 2022
a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LSTM layers

RNN-Playwrite a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LS

Arno Barton 1 Oct 29, 2021
Differentiable Optimizers with Perturbations in Pytorch

Differentiable Optimizers with Perturbations in PyTorch This contains a PyTorch implementation of Differentiable Optimizers with Perturbations in Tens

Jake Tuero 54 Jun 22, 2022
Source code for deep symbolic optimization.

Update July 10, 2021: This repository now supports an additional symbolic optimization task: learning symbolic policies for reinforcement learning. Th

Brenden Petersen 290 Dec 25, 2022
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance [Video Demo] [Paper] Installation Requirements Python 3.6 PyTorch 1.1.0 Pleas

Jiachen Xu 19 Oct 28, 2022
A novel benchmark dataset for Monocular Layout prediction

AutoLay AutoLay: Benchmarking Monocular Layout Estimation Kaustubh Mani, N. Sai Shankar, J. Krishna Murthy, and K. Madhava Krishna Abstract In this pa

Kaustubh Mani 39 Apr 26, 2022
Anti-UAV base on PaddleDetection

Paddle-Anti-UAV Anti-UAV base on PaddleDetection Background UAVs are very popular and we can see them in many public spaces, such as parks and playgro

Qingzhong Wang 2 Apr 20, 2022