SoGCN: Second-Order Graph Convolutional Networks

Overview

SoGCN: Second-Order Graph Convolutional Networks

This is the authors' implementation of paper "SoGCN: Second-Order Graph Convolutional Networks" in PyTorch. All the hyper-parameters and experiment settings have been included in this repo.

Requirements

For the GNN benchmarking part, our experiments are based on GNN Benchmark. Please follow the instructions in Benchmark Installation to install the running environment. Our code is tested with PyTorch 1.3.1 + Cuda Toolkit 10.0.

For the experiments on OGB Open Graph Benchmark, we built our models based on offical code. Please follow the instructions in Getting Started to configure the running environment. Our code is tested with PyTorch 1.4.0 + Cuda Toolkit 10.1.

Our experiments is conducted on a 4-core Nvidia Quadro P6000 GPU running on Ubuntu 18.04.2 LTS.

Reproduce Results

For SGS and GNN benchmark datasets, we provide a script named 'scripts/exp.py' to run a series of model training in screen sessions. You can type python scripts/exp.py -h to view its usage. To OGB benchmark dataset, we provide shell scripts 'scripts/run_ogbn_proteins.sh' and 'scripts/run_ogbg_molhiv.sh' to reproduce results with our hyper-parameter settings.

For convenience, below presents the commands to reproduce our results.

Synthetic Graph Spectrum Dataset

To train models on SGS datasets, run the following commands:

## High-Pass
python scripts/exp.py -a start -e highpass_sogcn -t SGS -g 1111 --dataset SGS_HIGH_PASS --config 'configs/SGS_node_regression_SoGCN.json'
python scripts/exp.py -a start -e highpass_sogcn -t SGS -g 1111 --dataset SGS_HIGH_PASS --config 'configs/SGS_node_regression_GCN.json'
python scripts/exp.py -a start -e highpass_sogcn -t SGS -g 1111 --dataset SGS_HIGH_PASS --config 'configs/SGS_node_regression_GIN.json'

## Low-Pass
python scripts/exp.py -a start -e lowpass_sogcn -t SGS -g 1111 --dataset SGS_LOW_PASS --config 'configs/SGS_node_regression_SoGCN.json'
python scripts/exp.py -a start -e lowpass_sogcn -t SGS -g 1111 --dataset SGS_LOW_PASS --config 'configs/SGS_node_regression_GCN.json'
python scripts/exp.py -a start -e lowpass_sogcn -t SGS -g 1111 --dataset SGS_LOW_PASS --config 'configs/SGS_node_regression_GIN.json'

## Band-Pass
python scripts/exp.py -a start -e bandpass_sogcn -t SGS -g 1111 --dataset SGS_BAND_PASS --config 'configs/SGS_node_regression_SoGCN.json'
python scripts/exp.py -a start -e bandpass_sogcn -t SGS -g 1111 --dataset SGS_BAND_PASS --config 'configs/SGS_node_regression_GCN.json'
python scripts/exp.py -a start -e bandpass_sogcn -t SGS -g 1111 --dataset SGS_BAND_PASS --config 'configs/SGS_node_regression_GIN.json'

Note the results will be saved to '_out/SGS_node_regression/'.

Open Graph Benchmarks

Running the following commands will reproduce our results on Open Graph Benchmark datasets:

scripts/run_ogbn_proteins.sh <log_dir> [<gpu_id>] [--test]
scripts/run_ogbg_molhiv.sh <log_dir> [<gpu_id>] [--test]

where log_dir specifies the folder to load or save output logs. The downloaded log files will be saved in _out/protein_nodeproppred and _out/molhiv_graphproppred for ogbn-protein and ogbn-molhiv datasets, respectively. gpu_id specifies the GPU device to run our models. Add --test if you only want to reload the log files and read out the testing results. The OGB dataset will be automatically downloaded into data/OGB directory at the first run.

To download the saved log files for ogb datasets, please run the following scripts:

bash scripts/download_logfiles_ogb.sh

GNN Benchmarks

To test on our pretrained models on GNN benchmarks, please follow the steps as below:

  1. Download our pretrained models.
# make sure the commands below are executed in the root directory of this project
bash scripts/download_pretrained_molecules.sh
bash scripts/download_pretrained_superpixels.sh
bash scripts/download_pretrained_SBMs.sh

Pretrained models will be downloaded to '_out/molecules_graph_regression', '_out/superpixels_graph_classification', '_out/SBMs_node_classification', respectively.

  1. Type the commands for different tasks

Molecules Graph Regression

## ZINC
python main_molecules_graph_regression.py --model SoGCN --dataset ZINC --gpu_id 0 --test True --out_dir _out/molecules_graph_regression/zinc_sogcn
python main_molecules_graph_regression.py --model SoGCN --dataset ZINC --gpu_id 0 --test True --out_dir _out/molecules_graph_regression/zinc_sogcn_gru

Superpixels Graph Classification

## MNIST
python main_superpixels_graph_classification.py --model SoGCN --dataset MNIST --gpu_id 0 --test True --out_dir _out/superpixels_graph_classification/mnist_sogcn
python main_superpixels_graph_classification.py --model SoGCN --dataset MNIST --gpu_id 0 --test True --out_dir _out/superpixels_graph_classification/mnist_sogcn_gru


## CIFAR10
python main_superpixels_graph_classification.py --model SoGCN --dataset CIFAR10 --gpu_id 0 --test True --out_dir _out/superpixels_graph_classification/cifar10_sogcn
python main_superpixels_graph_classification.py --model SoGCN --dataset CIFAR10 --gpu_id 0 --test True --out_dir _out/superpixels_graph_classification/cifar10_sogcn_gru

SBMs Node Classification

## CLUSTER
python main_SBMs_node_classification.py --model SoGCN --dataset SBM_CLUSTER  --verbose True --gpu_id 0 --test True --out_dir _out/SBMs_node_classification/cluster_sogcn
python main_SBMs_node_classification.py --model SoGCN --dataset SBM_CLUSTER  --verbose True --gpu_id 0 --test True --out_dir _out/SBMs_node_classification/cluster_sogcn_gru

## PATTERN
python main_SBMs_node_classification.py --model SoGCN --dataset SBM_PATTERN  --verbose True --gpu_id 0 --test True --out_dir _out/SBMs_node_classification/pattern_sogcn
python main_SBMs_node_classification.py --model SoGCN --dataset SBM_PATTERN  --verbose True --gpu_id 0 --test True --out_dir _out/SBMs_node_classification/pattern_sogcn_gru
Owner
Yuehao
PhD in Computer Science & Engineering @ CUHK. Research interest includes Graphics + Vision + Machine Learning.
Yuehao
Unconstrained Text Detection with Box Supervisionand Dynamic Self-Training

SelfText Beyond Polygon: Unconstrained Text Detection with Box Supervisionand Dynamic Self-Training Introduction This is a PyTorch implementation of "

weijiawu 34 Nov 09, 2022
Open-source implementation of Google Vizier for hyper parameters tuning

Advisor Introduction Advisor is the hyper parameters tuning system for black box optimization. It is the open-source implementation of Google Vizier w

tobe 1.5k Jan 04, 2023
Split your patch similarly to `git add -p` but supporting multiple buckets

split-patch.py This is git add -p on steroids for patches. Given a my.patch you can run ./split-patch.py my.patch You can choose in which bucket to p

102 Oct 06, 2022
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020

Google Research 3k Jan 01, 2023
This repository for project that can Automate Number Plate Recognition (ANPR) in Morocco Licensed Vehicles. 💻 + 🚙 + 🇲🇦 = 🤖 🕵🏻‍♂️

MoroccoAI Data Challenge (Edition #001) This Reposotory is result of our work in the comepetiton organized by MoroccoAI in the context of the first Mo

SAFOINE EL KHABICH 14 Oct 31, 2022
Motion Reconstruction Code and Data for Skills from Videos (SFV)

Motion Reconstruction Code and Data for Skills from Videos (SFV) This repo contains the data and the code for motion reconstruction component of the S

268 Dec 01, 2022
Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition"

CLIPstyler Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition" Environment Pytorch 1.7.1, Python 3.6 $ c

203 Dec 30, 2022
Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces

This repository contains source code for the paper Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces a

9 Nov 21, 2022
PyTorch implementation of Memory-based semantic segmentation for off-road unstructured natural environments.

MemSeg: Memory-based semantic segmentation for off-road unstructured natural environments Introduction This repository is a PyTorch implementation of

11 Nov 28, 2022
This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners.

LiST (Lite Self-Training) This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners. LiST is short for Lite S

Microsoft 28 Dec 07, 2022
Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners

DART Implementation for ICLR2022 paper Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners. Environment

ZJUNLP 83 Dec 27, 2022
Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions

README Repository containing the code for the paper "Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions". Specifically, an

Yousef Emam 13 Nov 24, 2022
Proto-RL: Reinforcement Learning with Prototypical Representations

Proto-RL: Reinforcement Learning with Prototypical Representations This is a PyTorch implementation of Proto-RL from Reinforcement Learning with Proto

Denis Yarats 74 Dec 06, 2022
Zero-shot Synthesis with Group-Supervised Learning (ICLR 2021 paper)

GSL - Zero-shot Synthesis with Group-Supervised Learning Figure: Zero-shot synthesis performance of our method with different dataset (iLab-20M, RaFD,

Andy_Ge 62 Dec 21, 2022
[内测中]前向式Python环境快捷封装工具,快速将Python打包为EXE并添加CUDA、NoAVX等支持。

QPT - Quick packaging tool 快捷封装工具 GitHub主页 | Gitee主页 QPT是一款可以“模拟”开发环境的多功能封装工具,最短只需一行命令即可将普通的Python脚本打包成EXE可执行程序,并选择性添加CUDA和NoAVX的支持,尽可能兼容更多的用户环境。 感觉还可

QPT Family 545 Dec 28, 2022
Scripts and outputs related to the paper Prediction of Adverse Biological Effects of Chemicals Using Knowledge Graph Embeddings.

Knowledge Graph Embeddings and Chemical Effect Prediction, 2020. Scripts and outputs related to the paper Prediction of Adverse Biological Effects of

Knowledge Graphs at the Norwegian Institute for Water Research 1 Nov 01, 2021
KinectFusion implemented in Python with PyTorch

KinectFusion implemented in Python with PyTorch This is a lightweight Python implementation of KinectFusion. All the core functions (TSDF volume, fram

Jingwen Wang 80 Jan 03, 2023
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 07, 2022
Reading list for research topics in Masked Image Modeling

awesome-MIM Reading list for research topics in Masked Image Modeling(MIM). We list the most popular methods for MIM, if I missed something, please su

ligang 231 Dec 07, 2022