Plugin adapted from Ultralytics to bring YOLOv5 into Napari

Overview

napari-yolov5

License PyPI Python Version tests codecov napari hub

Plugin adapted from Ultralytics to bring YOLOv5 into Napari.

Training and detection can be done using the GUI. Training dataset must be prepared prior to using this plugin. Further development will allow users to use Napari to prepare the dataset. Follow instructions stated on Ultralytics Github to prepare the dataset.

The plugin includes 3 pre-trained networks that are able to identify mitosis stages or apoptosis on soSPIM images. More details can be found on the pre-print.


This napari plugin was generated with Cookiecutter using @napari's cookiecutter-napari-plugin template.

Installation

First install conda and create an environment for the plugin

conda create --prefix env-napari-yolov5 python=3.9
conda activate env-napari-yolov5

You can install napari-yolov5 and napari via pip:

pip install napari-yolov5 
pip install napari[all]

For GPU support :

pip uninstall torch
pip install torchvision==0.10.0+cu111 -f https://download.pytorch.org/whl/torch_stable.html

Usage

First select if you would like to train a new network or detect objects.

alt text

For Training :

Data preparation should be done following Ultralytics' instructions.

Select the size of the network, the number of epochs, the number of images per batch to load on the GPU, the size of the images (must be a stride of 32), and the name of the network.

alt text

An example of the YAML config file is provided in src/napari_yolov5/resources folder.

alt text

Progress can be seen on the Terminal. The viewer will switch to Detection mode automatically when the network is finished being trained.

alt text

For Detection :

It is possible to perform the detection on a single layer chosen in the list, all the layers opened, or by giving a folder path. For folder detection, all the images will be loaded as a single stack.

alt text

Nucleus size of the prediction layer has te be filled to resize the image to the training dataset. Nucleus size of the training dataset will be asked in case of a custom network.

Confidence threshold defines the minimum value for a detected object to be considered positive. iou nms threshold (intersection-over-union non-max-suppression) defines the overlapping area of two boxes as a single object. Only the box with the maximum confidence is kept. Progress can be seen on the Terminal.

alt text

Few options allow for modification on how the boxes are being displayed (default : box + class + confidence score ; box + class ; box only) and if the box coordinates and the image overlay will be exported. Post-processing option will perform a simple 3D assignment based on 3D connected component analysis. A median filter (1x1x3 XYZ) is applied prior to the assignment. The centroid of each object is then saved into a new point layer as a 3D point with a random color for each class.

alt text

The localisation of each centroid is saved and the path is shown in the Terminal at the end of the detection.

alt text

Contributing

Contributions are very welcome. Tests can be run with tox, please ensure the coverage at least stays the same before you submit a pull request.

License

Distributed under the terms of the GNU GPL v3.0 license, "napari-yolov5" is free and open source software

Issues

If you encounter any problems, please [file an issue] along with a detailed description.

This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised and Tiny ML scenarios"

TinyWeaklyIsolationForest This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised a

2 Mar 21, 2022
Computational inteligence project on faces in the wild dataset

Table of Contents The general idea How these scripts work? Loading data Needed modules and global variables Parsing the arrays in dataset Extracting a

tooraj taraz 4 Oct 21, 2022
WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose

WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose Yijun Zhou and James Gregson - BMVC2020 Abstract: We present an end-to-end head-pos

368 Dec 26, 2022
Pytorch implementation for "Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter".

Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter This is a pytorch-based implementation for paper Implicit Feature Alignme

wangtianwei 61 Nov 12, 2022
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
Pointer-generator - Code for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Networks

Note: this code is no longer actively maintained. However, feel free to use the Issues section to discuss the code with other users. Some users have u

Abi See 2.1k Jan 04, 2023
This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports"

Introduction: X-Ray Report Generation This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports". O

no name 36 Dec 16, 2022
A GUI for Face Recognition, based upon Docker, Tkinter, GPU and a camera device.

Face Recognition GUI This repository is a GUI version of Face Recognition by Adam Geitgey, where e.g. Docker and Tkinter are utilized. All the materia

Kasper Henriksen 6 Dec 05, 2022
blind SQLIpy sebuah alat injeksi sql yang menggunakan waktu sql untuk mendapatkan sebuah server database.

blind SQLIpy Alat blind SQLIpy ini merupakan alat injeksi sql yang menggunakan metode time based blind sql injection metode tersebut membutuhkan waktu

Galih Anggoro Prasetya 4 Feb 24, 2022
The Rich Get Richer: Disparate Impact of Semi-Supervised Learning

The Rich Get Richer: Disparate Impact of Semi-Supervised Learning Preprocess file of the dataset used in implicit sub-populations: (Demographic groups

<a href=[email protected]"> 4 Oct 14, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
Reimplementation of NeurIPS'19: "Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting" by Shu et al.

[Re] Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting Reimplementation of NeurIPS'19: "Meta-Weight-Net: Learning an Explicit Mapping

Robert Cedergren 1 Mar 13, 2020
PyTorch implementation for MINE: Continuous-Depth MPI with Neural Radiance Fields

MINE: Continuous-Depth MPI with Neural Radiance Fields Project Page | Video PyTorch implementation for our ICCV 2021 paper. MINE: Towards Continuous D

Zijian Feng 325 Dec 29, 2022
Source code of the paper Meta-learning with an Adaptive Task Scheduler.

ATS About Source code of the paper Meta-learning with an Adaptive Task Scheduler. If you find this repository useful in your research, please cite the

Huaxiu Yao 16 Dec 26, 2022
SEC'21: Sparse Bitmap Compression for Memory-Efficient Training onthe Edge

Training Deep Learning Models on The Edge Training on the Edge enables continuous learning from new data for deployed neural networks on memory-constr

Brown University Scale Lab 4 Nov 18, 2022
Python-based Informatics Kit for Analysing Chemical Units

INSTALLATION Python-based Informatics Kit for the Analysis of Chemical Units Step 1: Make a conda environment: conda create -n pikachu python=3.9 cond

47 Dec 23, 2022
BC3407-Group-5-Project - BC3407 Group Project With Python

BC3407-Group-5-Project As the world struggles to contain the ever-changing varia

1 Jan 26, 2022
Custom implementation of Corrleation Module

Pytorch Correlation module this is a custom C++/Cuda implementation of Correlation module, used e.g. in FlowNetC This tutorial was used as a basis for

Clément Pinard 361 Dec 12, 2022
PyTorch Implementation of AnimeGANv2

PyTorch implementation of AnimeGANv2

4k Jan 07, 2023
Discover hidden deepweb pages

DeepWeb Scapper Att: Demo version An simple script to scrappe deepweb to find pages. Will return if any of those exists and will save on a file. You s

Héber Júlio 77 Oct 02, 2022