SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021]

Related tags

Deep LearningSSD
Overview

SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021]

Pdf: https://openreview.net/forum?id=v5gjXpmR8J

Code for our ICLR 2021 paper on outlier detection, titled SSD, without requiring class labels of in-distribution training data. We leverage recent advances in self-supervised representation learning followed by the cluster-based outlier detection to achieve competitive performance. This repository support both self-supervised training of networks and outlier detection evaluation of pre-trained networks. It also includes code for the two proposed extensions in the paper, i.e., 1) Few-shot outlier detection and 2) Extending SSD by including class labels, when available.

Getting started

Let's start by installing all dependencies.

pip install -r requirement.txt

Outlier detection with a pre-trained classifier

This is how we can evaluate the performance of a pre-trained ResNet50 classifier trained using SimCLR on the CIFAR-10 dataset.

CUDA_VISIBLE_DEVICES=$gpus_ids python -u eval_ssd.py --arch resnet50 --training-mode SimCLR --dataset cifar10 --ckpt checkpoint_path --normalize --exp-name name_of_this_experiment

  • training-mode: Choose from ("SimCLR", "SupCon", "SupCE"). This will choose the right network modules for the checkpoint.
  • arch: Choose from available architectures in models.py
  • dataset: Choose from ("cifar10", "cifar100", "svhn", "stl")
  • --normalize: If set, it will normalize input images. Use only if inputs were normalized in training too.
  • --exp-name: Experiment name. We will log results into a text file of this name.

The steps to evaluate with $SSD_k$ are exactly the same, except that now you have to also provide values for k and copies . k refers to how many outliers are available from each class of targeted OOD datasets while copies refers to the number of transformed instances created per available outlier image.

CUDA_VISIBLE_DEVICES=$gpu_id python -u eval_ssdk.py --arch resnet50 --training-mode SimCLR --dataset cifar10 --ckpt checkpoint_path --normalize --k 5 --copies 10

Training a classifier using self-supervised/supervised learning

We also support training a classifier using self-supervised, supervised or a combination of both training methods. Here is an example script to train a ResNet50 network on the CIFAR-10 dataset using SimCLR.

CUDA_VISIBLE_DEVICES=$gpus_ids python -u train.py --arch resnet50 --training-mode SimCLR --dataset cifar10 --results-dir directory_to_save_checkpoint --exp-name name_of_this_experiment --warmup --normalize

  • --training-mode: Choose from ("SimCLR", "SupCon", "SupCE"). This will choose appropriate network modules, loss functions, and trainers.
  • --warmup: We recommend using warmup when batch-size is large, which is often the case for self-supervised methods.

Choices for other arguments are similar to what we mentioned earlier in the evaluation section.

Reference

If you find this work helpful, consider citing it.

@inproceedings{sehwag2021ssd,
  title={SSD:  A Unified Framework for Self-Supervised Outlier Detection},
  author={Vikash Sehwag and Mung Chiang and Prateek Mittal},
 booktitle={International Conference on Learning Representations},
 year={2021},
 url={https://openreview.net/forum?id=v5gjXpmR8J}
}
PN-Net a neural field-based framework for depth estimation from single-view RGB images.

PN-Net We present a neural field-based framework for depth estimation from single-view RGB images. Rather than representing a 2D depth map as a single

1 Oct 02, 2021
Tensorflow implementation of "Learning Deconvolution Network for Semantic Segmentation"

Tensorflow implementation of Learning Deconvolution Network for Semantic Segmentation. Install Instructions Works with tensorflow 1.11.0 and uses the

Fabian Bormann 224 Apr 15, 2022
Code for paper Adaptively Aligned Image Captioning via Adaptive Attention Time

Adaptively Aligned Image Captioning via Adaptive Attention Time This repository includes the implementation for Adaptively Aligned Image Captioning vi

Lun Huang 45 Aug 27, 2022
A python script to dump all the challenges locally of a CTFd-based Capture the Flag.

A python script to dump all the challenges locally of a CTFd-based Capture the Flag. Features Connects and logins to a remote CTFd instance. Dumps all

Podalirius 77 Dec 07, 2022
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
Implementation of ETSformer, state of the art time-series Transformer, in Pytorch

ETSformer - Pytorch Implementation of ETSformer, state of the art time-series Transformer, in Pytorch Install $ pip install etsformer-pytorch Usage im

Phil Wang 121 Dec 30, 2022
Deep Learning with PyTorch made easy 🚀 !

Deep Learning with PyTorch made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. It also provides a c

381 Dec 22, 2022
A collection of resources and papers on Diffusion Models, a darkhorse in the field of Generative Models

This repository contains a collection of resources and papers on Diffusion Models and Score-based Models. If there are any missing valuable resources

5.1k Jan 08, 2023
The CLRS Algorithmic Reasoning Benchmark

Learning representations of algorithms is an emerging area of machine learning, seeking to bridge concepts from neural networks with classical algorithms.

DeepMind 251 Jan 05, 2023
MoveNet Single Pose on DepthAI

MoveNet Single Pose tracking on DepthAI Running Google MoveNet Single Pose models on DepthAI hardware (OAK-1, OAK-D,...). A convolutional neural netwo

64 Dec 29, 2022
PyTorch implementation of 1712.06087 "Zero-Shot" Super-Resolution using Deep Internal Learning

Unofficial PyTorch implementation of "Zero-Shot" Super-Resolution using Deep Internal Learning Unofficial Implementation of 1712.06087 "Zero-Shot" Sup

Jacob Gildenblat 196 Nov 27, 2022
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022
A Python library for generating new text from existing samples.

ReMarkov is a Python library for generating text from existing samples using Markov chains. You can use it to customize all sorts of writing from birt

8 May 17, 2022
PyTorch implementation of Pay Attention to MLPs

gMLP PyTorch implementation of Pay Attention to MLPs. Quickstart Clone this repository. git clone https://github.com/jaketae/g-mlp.git Navigate to th

Jake Tae 34 Dec 13, 2022
Self-Supervised Document-to-Document Similarity Ranking via Contextualized Language Models and Hierarchical Inference

Self-Supervised Document Similarity Ranking (SDR) via Contextualized Language Models and Hierarchical Inference This repo is the implementation for SD

Microsoft 36 Nov 28, 2022
Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks.

The Lottery Ticket Hypothesis for Pre-trained BERT Networks Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks. [NeurIPS

VITA 122 Dec 14, 2022
Code for "Localization with Sampling-Argmax", NeurIPS 2021

Localization with Sampling-Argmax [Paper] [arXiv] [Project Page] Localization with Sampling-Argmax Jiefeng Li, Tong Chen, Ruiqi Shi, Yujing Lou, Yong-

JeffLi 71 Dec 17, 2022
code for Fast Point Cloud Registration with Optimal Transport

robot This is the repository for the paper "Accurate Point Cloud Registration with Robust Optimal Transport". We are in the process of refactoring the

28 Jan 04, 2023
Lenia - Mathematical Life Forms

For full version list, see Timeline in Lenia portal [2020-10-13] Update Python version with multi-kernel and multi-channel extensions (v3.4 LeniaNDK.p

Bert Chan 3.1k Dec 28, 2022
Tensorflow/Keras Plug-N-Play Deep Learning Models Compilation

DeepBay This project was created with the objective of compile Machine Learning Architectures created using Tensorflow or Keras. The architectures mus

Whitman Bohorquez 4 Sep 26, 2022