Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks.

Overview

The Lottery Ticket Hypothesis for Pre-trained BERT Networks

License: MIT

Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks. [NeurIPS 2020]

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang Wang, Michael Carbin.

Our implementation is based on Huggingface repo. Details are referred to README here. Pre-trained subnetworks are coming soon.

Overview

The Existence of Matching Subnetworks in BERT

Transfer Learning for BERT Winning Tickets

Method

Reproduce Details

Prerequisites and Installation

Details are referred to README here.

Iterative Magnitude Pruning (IMP)

MLM task:

python -u LT_pretrain.py 
	   --output_dir LT_pretrain_model
	   --model_type bert 
	   --model_name_or_path bert-base-uncased 
	   --train_data_file pretrain_data/en.train 
	   --do_train 
	   --eval_data_file pretrain_data/en.valid 
	   --do_eval 
	   --per_gpu_train_batch_size 16 
	   --per_gpu_eval_batch_size 16 
	   --evaluate_during_training 
	   --num_train_epochs 1 
	   --logging_steps 10000 
	   --save_steps 10000 
	   --mlm 
	   --overwrite_output_dir 
	   --seed 57

Glue task:

python -u LT_glue.py
	   --output_dir tmp/mnli 
	   --logging_steps 36813 
	   --task_name MNLI 
	   --data_dir glue_data/MNLI 
	   --model_type bert 
	   --model_name_or_path bert-base-uncased 
	   --do_train 
	   --do_eval 
	   --do_lower_case 
	   --max_seq_length 128 
	   --per_gpu_train_batch_size 32 
	   --learning_rate 2e-5 
	   --num_train_epochs 30 
	   --overwrite_output_dir 
	   --evaluate_during_training 
	   --save_steps 36813
	   --eval_all_checkpoints 
	   --seed 57

SQuAD task:

python -u squad_trans.py 
	   --output_dir tmp/530/squad 
	   --model_type bert 
	   --model_name_or_path bert-base-uncased 
       --do_train 
       --do_eval 
       --do_lower_case 
       --train_file SQuAD/train-v1.1.json 
       --predict_file SQuAD/dev-v1.1.json 
       --per_gpu_train_batch_size 16 
       --learning_rate 3e-5 
       --num_train_epochs 40 
       --max_seq_length 384 
       --doc_stride 128 
       --evaluate_during_training 
       --eval_all_checkpoints 
       --overwrite_output_dir 
       --logging_steps 22000 
       --save_steps 22000 
       --seed 57

One-shot Magnitude Pruning (OMP)

python oneshot.py --weight [pre or rand] --model [glue or squad or pretrain] --rate 0.5

Fine-tuning

MLM task:

python -u pretrain_trans.py 
	   --dir pre\  [using random weight or official pretrain weight]
	   --weight_pertub tmp/shuffle_weight.pt\ [weight for Bert (not required)]
	   --mask_dir tmp/dif_mask/pretrain_mask.pt \ [mask file]
	   --output_dir tmp/530/pre 
	   --model_type bert 
	   --model_name_or_path bert-base-uncased 
	   --train_data_file pretrain_data/en.train 
	   --do_train --eval_data_file pretrain_data/en.valid 
	   --do_eval 
	   --per_gpu_train_batch_size 8 
	   --per_gpu_eval_batch_size 8 
	   --evaluate_during_training 
	   --num_train_epochs 1 
	   --logging_steps 2000 
	   --save_steps 0 
	   --max_steps 20000  
	   --mlm 
	   --overwrite_output_dir 
	   --seed 57

Glue task:

python -u glue_trans.py 
       --dir pre \  [using random weight or official pretrain weight]
       --weight_pertub tmp/shuffle_weight.pt \ [weight for Bert (not required)]
       --mask_dir tmp/dif_mask/mnli_mask.pt \ [mask file]
       --output_dir tmp/530/mnli 
       --logging_steps 12271 
       --task_name MNLI 
       --data_dir glue_data/MNLI 
       --model_type bert 
       --model_name_or_path bert-base-uncased 
       --do_train 
       --do_eval 
       --do_lower_case 
       --max_seq_length 128 
       --per_gpu_train_batch_size 32 
       --learning_rate 2e-5 
       --num_train_epochs 3 
       --overwrite_output_dir 
       --evaluate_during_training 
       --save_steps 0 
       --eval_all_checkpoints 
       --seed 5

SQuAD task:

python -u squad_trans.py 
	   --dir pre \  [using random weight or official pretrain weight]
	   --weight_pertub tmp/shuffle_weight.pt \ [weight for Bert (not required)]
	   --mask_dir tmp/dif_mask/squad_mask.pt \ [mask file]
	   --output_dir tmp/530/squad 
	   --model_type bert 
	   --model_name_or_path bert-base-uncased 
	   --do_train 
	   --do_eval 
	   --do_lower_case 
	   --train_file SQuAD/train-v1.1.json 
	   --predict_file SQuAD/dev-v1.1.json 
	   --per_gpu_train_batch_size 16 
	   --learning_rate 3e-5 
	   --num_train_epochs 4 
	   --max_seq_length 384 
	   --doc_stride 128 
	   --evaluate_during_training 
	   --eval_all_checkpoints 
	   --overwrite_output_dir 
	   --logging_steps 5500 
	   --save_steps 0 
	   --seed 57

Subnetwork with Ramdomly Suffuled Pre-trined Weight

python pertub_weight.py

Citation

If you use this code for your research, please cite our paper:

@misc{chen2020lottery,
    title={The Lottery Ticket Hypothesis for Pre-trained BERT Networks},
    author={Tianlong Chen and Jonathan Frankle and Shiyu Chang and Sijia Liu and Yang Zhang and Zhangyang Wang and Michael Carbin},
    year={2020},
    eprint={2007.12223},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

Acknowlegement

We would like to express our deepest gratitude to the MIT-IBM Watson AI Lab. In particular, we would like to thank John Cohn for his generous help in providing us with the computing resources necessary to conduct this research.

Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
Repo for parser tensorflow(.pb) and tflite(.tflite)

tfmodel_parser .pb file is the format of tensorflow model .tflite file is the format of tflite model, which usually used in mobile devices before star

1 Dec 23, 2021
To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beginners, intermediates as well as experts

JaxTon 💯 JAX exercises Mission 🚀 To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beg

Rohan Rao 512 Jan 01, 2023
Pytorch implementation of DeepMind's differentiable neural computer paper.

DNC pytorch This is a Pytorch implementation of DeepMind's Differentiable Neural Computer (DNC) architecture introduced in their recent Nature paper:

Yuanpu Xie 91 Nov 21, 2022
Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows.

Swin-Transformer Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows. For more details, ple

旷视天元 MegEngine 9 Mar 14, 2022
This repository contains the data and code for the paper "Diverse Text Generation via Variational Encoder-Decoder Models with Gaussian Process Priors" ([email protected])

GP-VAE This repository provides datasets and code for preprocessing, training and testing models for the paper: Diverse Text Generation via Variationa

Wanyu Du 18 Dec 29, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
This repository contains the code for the paper "Hierarchical Motion Understanding via Motion Programs"

Hierarchical Motion Understanding via Motion Programs (CVPR 2021) This repository contains the official implementation of: Hierarchical Motion Underst

Sumith Kulal 40 Dec 05, 2022
Visualization toolkit for neural networks in PyTorch! Demo -->

FlashTorch A Python visualization toolkit, built with PyTorch, for neural networks in PyTorch. Neural networks are often described as "black box". The

Misa Ogura 692 Dec 29, 2022
BraTs-VNet - BraTS(Brain Tumour Segmentation) using V-Net

BraTS(Brain Tumour Segmentation) using V-Net This project is an approach to dete

Rituraj Dutta 7 Nov 27, 2022
Simple tools for logging and visualizing, loading and training

TNT TNT is a library providing powerful dataloading, logging and visualization utilities for Python. It is closely integrated with PyTorch and is desi

1.5k Jan 02, 2023
[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction

PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction International Conference on 3D Vision, 2020 Sai Sagar Jinka1, Rohan

Rohan Chacko 39 Oct 12, 2022
Official PyTorch implementation of Spatial Dependency Networks.

Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling Đorđe Miladinović   Aleksandar Stanić   Stefan Bauer   Jürgen Schmid

Djordje Miladinovic 34 Jan 19, 2022
Supplementary code for the paper "Meta-Solver for Neural Ordinary Differential Equations" https://arxiv.org/abs/2103.08561

Meta-Solver for Neural Ordinary Differential Equations Towards robust neural ODEs using parametrized solvers. Main idea Each Runge-Kutta (RK) solver w

Julia Gusak 25 Aug 12, 2021
Official PyTorch implementation of "VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization" (CVPR 2021)

VITON-HD — Official PyTorch Implementation VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization Seunghwan Choi*1, Sunghyun Pa

Seunghwan Choi 250 Jan 06, 2023
Compute FID scores with PyTorch.

FID score for PyTorch This is a port of the official implementation of Fréchet Inception Distance to PyTorch. See https://github.com/bioinf-jku/TTUR f

2.1k Jan 06, 2023
REGTR: End-to-end Point Cloud Correspondences with Transformers

REGTR: End-to-end Point Cloud Correspondences with Transformers This repository contains the source code for REGTR. REGTR utilizes multiple transforme

Zi Jian Yew 108 Dec 17, 2022
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022
Official PyTorch implementation of PS-KD

Self-Knowledge Distillation with Progressive Refinement of Targets (PS-KD) Accepted at ICCV 2021, oral presentation Official PyTorch implementation of

61 Dec 28, 2022
Spatial Sparse Convolution Library

SpConv: Spatially Sparse Convolution Library PyPI Install Downloads CPU (Linux Only) pip install spconv CUDA 10.2 pip install spconv-cu102 CUDA 11.1 p

Yan Yan 1.2k Jan 07, 2023
ChebLieNet, a spectral graph neural network turned equivariant by Riemannian geometry on Lie groups.

ChebLieNet: Invariant spectral graph NNs turned equivariant by Riemannian geometry on Lie groups Hugo Aguettaz, Erik J. Bekkers, Michaël Defferrard We

haguettaz 12 Dec 10, 2022