Official code for 'Robust Siamese Object Tracking for Unmanned Aerial Manipulator' and offical introduction to UAMT100 benchmark

Related tags

Deep LearningSiamSA
Overview

SiamSA: Robust Siamese Object Tracking for Unmanned Aerial Manipulator

Demo video

  • 📹 Our video on Youtube and bilibili demonstrates the evaluation of SiamSA and other 4 state-of-the-art trackers on [email protected] and UAMT100 benchmark.

SiamSA

  • 📹 ​Real-world tests of SiamSA on a flying UAM platform form first and third perspective are also involved.

UAMT100 benchmark

  • The UAMT100 benchmark consists of 100 image sequences, which are captured from UAM perspectives. For subsequent tasks of UAM tracking, such as grasping, it represents various possibilities of UAM's tracking the object in an indoor environment.

image-20210915230200440

  • 16 kinds of objects are involved, and 11 attributes are annotated for each sequence. The figure demonstrates four scenarios of UAM tracking in UAMT100. The histogram in the figure is a statistic of attributes in UAMT100.
  • For more detail, please refer to the benchmark website, which will be released soon.

Environment setup

This code has been tested on Ubuntu 18.04, Python 3.8.3, Pytorch 0.7.0/1.6.0, CUDA 10.2. Please install related libraries before running this code:

pip install -r requirements.txt

Test

Download model from Google Drive or BaiduYun (code: v4r0) and put it into tools/snapshot directory.

Download testing datasets and put them into test_dataset directory. If you want to test the tracker on a new dataset, please refer to pysot-toolkit to set test_dataset.

python test.py 	                    \
	--trackername SiamSA            \ # tracker_name
	--dataset UAV123_10fps          \ # dataset_name
	--snapshot snapshot/model.pth     # model_path

The testing result will be saved in the results/dataset_name/tracker_name directory.

We provide our test results on Google Drive and BaiduYun (code: v4r1).

Train

Prepare training datasets

Download the datasets:

Note: train_dataset/dataset_name/readme.md has listed detailed operations about how to generate training datasets.

Train a model

To train the SiamSA model, run train.py with the desired configs:

cd tools
python train.py 

Evaluation

If you want to evaluate the tracker mentioned above, please put those results into results directory.

python eval.py 	                      \
	--tracker_path ./results          \ # result path
	--dataset UAV123_10fps            \ # dataset_name
	--tracker_prefix 'model'            # tracker_name

Contact

If you have any questions, please contact me.

Guangze Zheng

Email: [email protected]

Acknowledgement

  • The code is implemented based on pysot and SiamAPN. We would like to express our sincere thanks to the contributors.
  • Besides, we would like to thank Ziang Cao for his advice on the code.
  • As for UAMT100 benchmark, we appreciate the help from Fuling Lin, Haobo Zuo, and Liangliang Yao.
  • We would like to thank Kunhan Lu for his advice on TensorRT acceleration.
Owner
Intelligent Vision for Robotics in Complex Environment
Adaptive Vision for Robotics in Complex Environment
Intelligent Vision for Robotics in Complex Environment
Implementation of "JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting"

JOKR: Joint Keypoint Representation for Unsupervised Cross-Domain Motion Retargeting Pytorch implementation for the paper "JOKR: Joint Keypoint Repres

45 Dec 25, 2022
Implementation of 'X-Linear Attention Networks for Image Captioning' [CVPR 2020]

Introduction This repository is for X-Linear Attention Networks for Image Captioning (CVPR 2020). The original paper can be found here. Please cite wi

JDAI-CV 240 Dec 17, 2022
A 3D sparse LBM solver implemented using Taichi

taichi_LBM3D Background Taichi_LBM3D is a 3D lattice Boltzmann solver with Multi-Relaxation-Time collision scheme and sparse storage structure impleme

Jianhui Yang 121 Jan 06, 2023
A Python package for time series augmentation

tsaug tsaug is a Python package for time series augmentation. It offers a set of augmentation methods for time series, as well as a simple API to conn

Arundo Analytics 278 Jan 01, 2023
Implementation of ICCV21 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers

Implementation of ICCV 2021 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers arxiv This repository is based on detr Recently, DETR

twang 113 Dec 27, 2022
DrWhy is the collection of tools for eXplainable AI (XAI). It's based on shared principles and simple grammar for exploration, explanation and visualisation of predictive models.

Responsible Machine Learning With Great Power Comes Great Responsibility. Voltaire (well, maybe) How to develop machine learning models in a responsib

Model Oriented 590 Dec 26, 2022
Face recognize and crop them

Face Recognize Cropping Module Source 아이디어 Face Alignment with OpenCV and Python Requirement 필요 라이브러리 imutil dlib python-opence (cv2) Usage 사용 방법 open

Cho Moon Gi 1 Feb 15, 2022
PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis

Impersonator PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer an

SVIP Lab 1.7k Jan 06, 2023
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: "NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion". NÜWA is a unified multimodal

Microsoft 2.6k Jan 03, 2023
A Python package for generating concise, high-quality summaries of a probability distribution

GoodPoints A Python package for generating concise, high-quality summaries of a probability distribution GoodPoints is a collection of tools for compr

Microsoft 28 Oct 10, 2022
Python library for science observations from the James Webb Space Telescope

JWST Calibration Pipeline JWST requires Python 3.7 or above and a C compiler for dependencies. Linux and MacOS platforms are tested and supported. Win

Space Telescope Science Institute 386 Dec 30, 2022
Lexical Substitution Framework

LexSubGen Lexical Substitution Framework This repository contains the code to reproduce the results from the paper: Arefyev Nikolay, Sheludko Boris, P

Samsung 37 Sep 15, 2022
🐦 Opytimizer is a Python library consisting of meta-heuristic optimization techniques.

Opytimizer: A Nature-Inspired Python Optimizer Welcome to Opytimizer. Did you ever reach a bottleneck in your computational experiments? Are you tired

Gustavo Rosa 546 Dec 31, 2022
Understanding the Generalization Benefit of Model Invariance from a Data Perspective

Understanding the Generalization Benefit of Model Invariance from a Data Perspective This is the code for our NeurIPS2021 paper "Understanding the Gen

1 Jan 15, 2022
NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

Göktuğ Karakaşlı 16 Dec 05, 2022
MutualGuide is a compact object detector specially designed for embedded devices

Introduction MutualGuide is a compact object detector specially designed for embedded devices. Comparing to existing detectors, this repo contains two

ZHANG Heng 103 Dec 13, 2022
An implementation of the [Hierarchical (Sig-Wasserstein) GAN] algorithm for large dimensional Time Series Generation

Hierarchical GAN for large dimensional financial market data Implementation This repository is an implementation of the [Hierarchical (Sig-Wasserstein

11 Nov 29, 2022
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

Introduction This is a Python package available on PyPI for NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pyto

Artit 'Art' Wangperawong 5 Sep 29, 2021
The official implementation of paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks" (IJCV under review).

DGMS This is the code of the paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks". Installation Our code works with Pytho

Runpei Dong 3 Aug 28, 2022
A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

ICT.MIRACLE lab 75 Dec 26, 2022