Code and data for "Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning" (EMNLP 2021).

Related tags

Deep LearningGD-VCR
Overview

GD-VCR

Code for Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning (EMNLP 2021).

Research Questions and Aims:

  1. How well can a model perform on the images which requires geo-diverse commonsense to understand?
  2. What are the reasons behind performance disparity on Western and non-Western images?
  3. We aim to broaden researchers' vision on a realistic issue existing all over the world, and call upon researchers to consider more inclusive commonsense knowledge and better model transferability on various cultures.

In this repo, GD-VCR dataset and codes about 1) general model evaluation, 2) detailed controlled experiments, and 3) dataset construction are provided.

Repo Structure

GD-VCR
 ├─X_VCR				  --> storing GD-VCR/VCR data
 ├─configs
 │  └─vcr
 │     └─fine-tune-qa.json		  --> part of configs for evaluation
 ├─dataloaders
 │  └─vcr.py			          --> load GD-VCR/VCR data based on configs
 ├─models
 │  └─train.py		                  --> fine-tune/evaluate models
 │
 ├─val.jsonl			          --> GD-VCR dataset
 ├─val_addition_single.jsonl		  --> additional low-order QA pairs

GD-VCR dataset

First download the original VCR dataset to X_VCR:

cd X_VCR
wget https://s3.us-west-2.amazonaws.com/ai2-rowanz/vcr1annots.zip
wget https://s3.us-west-2.amazonaws.com/ai2-rowanz/vcr1images.zip
unzip vcr1annots.zip
unzip vcr1images.zip

Then download the GD-VCR dataset to X_VCR:

cd X_VCR
mv val.jsonl orig_val.jsonl
wget https://gdvcr.s3.us-west-1.amazonaws.com/MC-VCR_sample.zip
unzip MC-VCR_sample.zip

cd ..
mv val.jsonl X_VCR/
mv val_addition_single.jsonl X_VCR/

The detailed items in our GD-VCR dataset are almost the same as VCR. Please refer to VCR website for detailed explanations.

VisualBERT

Prepare Environment

Prepare environment as mentioned in the original repo of VisualBERT.

Fine-tune model on original VCR

Download the task-specific pre-trained checkpoint on original VCR vcr_pre_train.th to GD-VCR/visualbert/trained_models.

Then, use the command to fine-tune:

export PYTHONPATH=$PYTHONPATH:GD-VCR/visualbert/
export PYTHONPATH=$PYTHONPATH:GD-VCR/

cd GD-VCR/visualbert/models

CUDA_VISIBLE_DEVICES=0 python train.py -folder ../trained_models -config ../configs/vcr/fine-tune-qa.json

For convenience, we provide a trained checkpoint [Link] for quick evaluation.

Evaluation on GD-VCR

CUDA_VISIBLE_DEVICES=0 python train.py -folder ../trained_models -config ../configs/vcr/eval.json \
        [-region REGION] \
        [-scene SCENE] \
        [-single_or_multiple SINGLE_OR_MULTIPLE] \
        [-orig_or_new ORIG_OR_NEW] \
	[-addition_annotation_analysis] \
        [-grounding]

Here are the explanations of several important attributions:

  • REGION: One of the regions west, east-asia, south-asia, africa.
  • SCENE: One of the scenario (e.g., wedding).
  • SINGLE_OR_MULTIPLE: Whether studying single(low-order) or multiple(high-order) cognitive questions.
  • addition_annotation_analysis: Whether studying GD-VCR or additional annotated questions. If yes, you can choose to set SINGLE_OR_MULTIPLE to specify which types of questions you want to investigate.
  • ORIG_OR_NEW: Whether studying GD-VCR or original VCR dev set.
  • grounding: Whether analyzing grounding results by visualizing attention weights.

Given our fine-tuned VisualBERT model above, the evaluation results are shown below:

Models Overall West South Asia East Asia Africa
VisualBERT 53.27 **62.91** 52.04 45.39 51.85

ViLBERT

Prepare Environment

Prepare environment as mentioned in the original repo of ViLBERT.

Extract image features

We make use of the docker made for LXMERT. Detailed commands are shown below:

cd GD-VCR
git clone https://github.com/jiasenlu/bottom-up-attention.git
mv generate_tsv.py bottom-up-attention/tools
mv generate_tsv_gt.py bottom-up-attention/tools

docker pull airsplay/bottom-up-attention
docker run --name gd_vcr --runtime=nvidia -it -v /PATH/TO/:/PATH/TO/ airsplay/bottom-up-attention /bin/bash
[Used to enter into the docker]

cd /PATH/TO/GD-VCR/bottom-up-attention
pip install json_lines
pip install jsonlines
pip install python-dateutil==2.5.0

python ./tools/generate_tsv.py --cfg experiments/cfgs/faster_rcnn_end2end_resnet.yml --def models/vg/ResNet-101/faster_rcnn_end2end_final/test.prototxt --out ../vilbert_beta/feature/VCR/VCR_resnet101_faster_rcnn_genome.tsv --net data/faster_rcnn_models/resnet101_faster_rcnn_final.caffemodel --total_group 1 --group_id 0 --split VCR
python ./tools/generate_tsv_gt.py --cfg experiments/cfgs/faster_rcnn_end2end_resnet.yml --def models/vg/ResNet-101/faster_rcnn_end2end_final/test_gt.prototxt --out ../vilbert_beta/feature/VCR/VCR_gt_resnet101_faster_rcnn_genome.tsv --net data/faster_rcnn_models/resnet101_faster_rcnn_final.caffemodel --total_group 1 --group_id 0 --split VCR_gt
[Used to extract features]

Then, exit the dockerfile, and convert extracted features into lmdb form:

cd GD-VCR/vilbert_beta
python script/convert_lmdb_VCR.py
python script/convert_lmdb_VCR_gt.py

Fine-tune model on original VCR

Download the pre-trained checkpoint to GD-VCR/vilbert_beta/save/bert_base_6_layer_6_connect_freeze_0/.

Then, use the command to fine-tune:

cd GD-VCR/vilbert_beta
python -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --node_rank=0 train_tasks.py --bert_model bert-base-uncased --from_pretrained save/bert_base_6_layer_6_connect_freeze_0/pytorch_model_8.bin  --config_file config/bert_base_6layer_6conect.json  --learning_rate 2e-5 --num_workers 16 --tasks 1-2 --save_name pretrained

For convenience, we provide a trained checkpoint [Link] for quick evaluation.

Evaluation on GD-VCR

CUDA_VISIBLE_DEVICES=0,1 python eval_tasks.py 
		--bert_model bert-base-uncased 
		--from_pretrained save/VCR_Q-A-VCR_QA-R_bert_base_6layer_6conect-pretrained/vilbert_best.bin 
		--config_file config/bert_base_6layer_6conect.json --task 1 --split val  --batch_size 16

Note that if you want the results on original VCR dev set, you could directly change the "val_annotations_jsonpath" value of TASK1 to X_VCR/orig_val.jsonl.

Given our fine-tuned ViLBERT model above, the evaluation results are shown below:

Models Overall West South Asia East Asia Africa
ViLBERT 58.47 **65.82** 62.90 46.45 62.04

Dataset Construction

Here we provide dataset construction methods in our paper:

  • similarity.py: Compute the similarity among answer candidates and distribute candidates to each annotated questions.
  • relevance_model.py: Train a model to compute the relevance between question and answer.
  • question_cluster.py: Infer question templates from original VCR dataset as the basis of annotation.

For sake of convenience, we provide the trained relevance computation model [Link].

Acknowledgement

We thank for VisualBERT, ViLBERT, and Detectron authors' implementation. Also, we appreciate the effort of original VCR paper's author, and our work is highly influenced by VCR.

Citation

Please cite our EMNLP paper if this repository inspired your work.

@inproceedings{yin2021broaden,
  title = {Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning},
  author = {Yin, Da and Li, Liunian Harold and Hu, Ziniu and Peng, Nanyun and Chang, Kai-Wei},
  booktitle = {EMNLP},
  year = {2021}
}
Owner
Da Yin
Da Yin
Code for the paper "Offline Reinforcement Learning as One Big Sequence Modeling Problem"

Trajectory Transformer Code release for Offline Reinforcement Learning as One Big Sequence Modeling Problem. Installation All python dependencies are

Michael Janner 266 Dec 27, 2022
Python KNN model: Predicting a probability of getting a work visa. Tableau: Non-immigrant visas over the years.

The value of international students to the United States. Probability of getting a non-immigrant visa. Project timeline: Jan 2021 - April 2021 Project

Zinaida Dvoskina 2 Nov 21, 2021
Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive losses

Self-supervised learning Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive loss

Arijit Das 2 Mar 26, 2022
Read number plates with https://platerecognizer.com/

HASS-plate-recognizer Read vehicle license plates with https://platerecognizer.com/ which offers free processing of 2500 images per month. You will ne

Robin 69 Dec 30, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
Code release for The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification (TIP 2020)

The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification Code release for The Devil is in the Channels: Mutual-Channel

PRIS-CV: Computer Vision Group 230 Dec 31, 2022
Deep metric learning methods implemented in Chainer

Deep Metric Learning Implementation of several methods for deep metric learning in Chainer v4.2.0. Proxy-NCA: No Fuss Distance Metric Learning using P

ronekko 156 Nov 28, 2022
Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder

Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder Authors: - Eashan Adhikarla - Dan Luo - Dr. Brian D. Davison Abstract Many

Eashan Adhikarla 4 Dec 25, 2022
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig

Yixuan Su 79 Nov 04, 2022
Malmo Collaborative AI Challenge - Team Pig Catcher

The Malmo Collaborative AI Challenge - Team Pig Catcher Approach The challenge involves 2 agents who can either cooperate or defect. The optimal polic

Kai Arulkumaran 66 Jun 29, 2022
Code release for "Detecting Twenty-thousand Classes using Image-level Supervision".

Detecting Twenty-thousand Classes using Image-level Supervision Detic: A Detector with image classes that can use image-level labels to easily train d

Meta Research 1.3k Jan 04, 2023
Sparse Physics-based and Interpretable Neural Networks

Sparse Physics-based and Interpretable Neural Networks for PDEs This repository contains the code and manuscript for research done on Sparse Physics-b

28 Jan 03, 2023
The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier')

The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography

James 135 Dec 23, 2022
The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 2021)

EIGNN: Efficient Infinite-Depth Graph Neural Networks The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 20

Juncheng Liu 14 Nov 22, 2022
A Deep Learning Based Knowledge Extraction Toolkit for Knowledge Base Population

DeepKE is a knowledge extraction toolkit supporting low-resource and document-level scenarios for entity, relation and attribute extraction. We provide comprehensive documents, Google Colab tutorials

ZJUNLP 1.6k Jan 05, 2023
Deep Learning Algorithms for Hedging with Frictions

Deep Learning Algorithms for Hedging with Frictions This repository contains the Forward-Backward Stochastic Differential Equation (FBSDE) solver and

Xiaofei Shi 3 Dec 22, 2022
Physics-Informed Neural Networks (PINN) and Deep BSDE Solvers of Differential Equations for Scientific Machine Learning (SciML) accelerated simulation

NeuralPDE NeuralPDE.jl is a solver package which consists of neural network solvers for partial differential equations using scientific machine learni

SciML Open Source Scientific Machine Learning 680 Jan 02, 2023
Meta Learning for Semi-Supervised Few-Shot Classification

few-shot-ssl-public Code for paper Meta-Learning for Semi-Supervised Few-Shot Classification. [arxiv] Dependencies cv2 numpy pandas python 2.7 / 3.5+

Mengye Ren 501 Jan 08, 2023
Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”

Official implementation for TransDA Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”. Overview: Result: Prerequisites:

stanley 54 Dec 22, 2022
Differentiable Annealed Importance Sampling (DAIS)

Differentiable Annealed Importance Sampling (DAIS) This repository contains the code to reproduce the DAIS results from the paper Differentiable Annea

Guodong Zhang 6 Dec 26, 2021