Compact Bidirectional Transformer for Image Captioning

Related tags

Deep LearningCBTrans
Overview

Compact Bidirectional Transformer for Image Captioning

Requirements

  • Python 3.8
  • Pytorch 1.6
  • lmdb
  • h5py
  • tensorboardX

Prepare Data

  1. Please use git clone --recurse-submodules to clone this repository and remember to follow initialization steps in coco-caption/README.md.
  2. Download the preprocessd dataset from this link and extract it to data/.
  3. Please download the converted VinVL feature from this link and place them under data/mscoco_VinVL/. You can also optionally follow this instruction to prepare the fixed or adaptive bottom-up features extracted by Anderson and place them under data/mscoco/ or data/mscoco_adaptive/.
  4. Download part checkpoints from here and extract them to save/.

Offline Evaluation

To reproduce the results of single CBTIC model on Karpathy test split, just run

python  eval.py  --model  save/nsc-transformer-cb-VinVL-feat/model-best.pth   --infos_path  save/nsc-transformer-cb-VinVL-feat/infos_nsc-transformer-cb-VinVL-feat-best.pkl      --beam_size   2   --id  nsc-transformer-cb-VinVL-feat   --split test

To reproduce the results of ensemble of CBTIC models on Karpathy test split, just run

python eval_ensemble.py   --ids   nsc-transformer-cb-VinVL-feat  nsc-transformer-cb-VinVL-feat-seed1   nsc-transformer-cb-VinVL-feat-seed2  nsc-transformer-cb-VinVL-feat-seed3 --weights  1 1 1 1  --beam_size  2   --split  test

Online Evaluation

Please first run

python eval_ensemble.py   --split  test  --language_eval 0  --ids   nsc-transformer-cb-VinVL-feat  nsc-transformer-cb-VinVL-feat-seed1   nsc-transformer-cb-VinVL-feat-seed2  nsc-transformer-cb-VinVL-feat-seed3 --weights  1 1 1 1  --input_json  data/cocotest.json  --input_fc_dir data/mscoco_VinVL/cocobu_test2014/cocobu_fc --input_att_dir  data/mscoco_VinVL/cocobu_test2014/cocobu_att   --input_label_h5    data/cocotalk_bw_label.h5    --language_eval 0        --batch_size  128   --beam_size   2   --id   captions_test2014_cbtic_results 

and then follow the instruction to upload results.

Training

  1. In the first training stage, such as using VinVL feature, run
python  train.py   --noamopt --noamopt_warmup 20000   --seq_per_img 5 --batch_size 10 --beam_size 1 --learning_rate 5e-4 --num_layers 6 --input_encoding_size 512 --rnn_size 2048 --learning_rate_decay_start 0  --scheduled_sampling_start 0  --save_checkpoint_every 3000 --language_eval 1 --val_images_use 5000 --max_epochs 15     --checkpoint_path   save/transformer-cb-VinVL-feat   --id   transformer-cb-VinVL-feat   --caption_model  cbt     --input_fc_dir   data/mscoco_VinVL/cocobu_fc   --input_att_dir   data/mscoco_VinVL/cocobu_att    --input_box_dir    data/mscoco_VinVL/cocobu_box    
  1. Then in the second training stage, you need two GPUs with 12G memory each, please copy the above pretrained model first
cd save
./copy_model.sh  transformer-cb-VinVL-feat    nsc-transformer-cb-VinVL-feat
cd ..

and then run

python  train.py    --seq_per_img 5 --batch_size 10 --beam_size 1 --learning_rate 1e-5 --num_layers 6 --input_encoding_size 512 --rnn_size 2048  --save_checkpoint_every 3000 --language_eval 1 --val_images_use 5000 --self_critical_after 14  --max_epochs    30  --start_from   save/nsc-transformer-cb-VinVL-feat     --checkpoint_path   save/nsc-transformer-cb-VinVL-feat   --id  nsc-transformer-cb-VinVL-feat   --caption_model  cbt    --input_fc_dir   data/mscoco_VinVL/cocobu_fc   --input_att_dir   data/mscoco_VinVL/cocobu_att    --input_box_dir    data/mscoco_VinVL/cocobu_box 

Note

  1. Even if fixing all random seed, we find that the results of the two runs are still slightly different when using DataParallel on two GPUs. However, the results can be reproduced exactly when using one GPU.
  2. If you are interested in the ablation studies, you can use the git reflog to list all commits and use git reset --hard commit_id to change to corresponding commit.

Citation

@misc{zhou2022compact,
      title={Compact Bidirectional Transformer for Image Captioning}, 
      author={Yuanen Zhou and Zhenzhen Hu and Daqing Liu and Huixia Ben and Meng Wang},
      year={2022},
      eprint={2201.01984},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgements

This repository is built upon self-critical.pytorch. Thanks for the released code.

Owner
YE Zhou
YE Zhou
The implementation of "Optimizing Shoulder to Shoulder: A Coordinated Sub-Band Fusion Model for Real-Time Full-Band Speech Enhancement"

SF-Net for fullband SE This is the repo of the manuscript "Optimizing Shoulder to Shoulder: A Coordinated Sub-Band Fusion Model for Real-Time Full-Ban

Guochen Yu 36 Dec 02, 2022
Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021.

Playground4AWS Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021. Architecture Minecraft and Lamps This project i

Vinicius Senger 5 Nov 30, 2022
Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters"

Manga Character Screentone Synthesis Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters" presented in IEEE ISM 2

Tsubota 2 Nov 20, 2021
Capsule endoscopy detection DACON challenge

capsule_endoscopy_detection (DACON Challenge) Overview Yolov5, Yolor, mmdetection기반의 모델을 사용 (총 11개 모델 앙상블) 모든 모델은 학습 시 Pretrained Weight을 yolov5, yolo

MAILAB 11 Nov 25, 2022
[NeurIPS 2020] Code for the paper "Balanced Meta-Softmax for Long-Tailed Visual Recognition"

Balanced Meta-Softmax Code for the paper Balanced Meta-Softmax for Long-Tailed Visual Recognition Jiawei Ren, Cunjun Yu, Shunan Sheng, Xiao Ma, Haiyu

Jiawei Ren 65 Dec 21, 2022
FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows

FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows.

Meta Incubator 272 Jan 02, 2023
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
Codebase of deep learning models for inferring stability of mRNA molecules

Kaggle OpenVaccine Models Codebase of deep learning models for inferring stability of mRNA molecules, corresponding to the Kaggle Open Vaccine Challen

Eternagame 40 Dec 29, 2022
Learning to Prompt for Continual Learning

Learning to Prompt for Continual Learning (L2P) Official Jax Implementation L2P is a novel continual learning technique which learns to dynamically pr

Google Research 207 Jan 06, 2023
This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).

Predicting Patient Outcomes with Graph Representation Learning This repository contains the code used for Predicting Patient Outcomes with Graph Repre

Emma Rocheteau 76 Dec 22, 2022
OpenIPDM is a MATLAB open-source platform that stands for infrastructures probabilistic deterioration model

Open-Source Toolbox for Infrastructures Probabilistic Deterioration Modelling OpenIPDM is a MATLAB open-source platform that stands for infrastructure

CIVML 0 Jan 20, 2022
A library for uncertainty quantification based on PyTorch

Torchuq [logo here] TorchUQ is an extensive library for uncertainty quantification (UQ) based on pytorch. TorchUQ currently supports 10 representation

TorchUQ 96 Dec 12, 2022
Chinese license plate recognition

AgentCLPR 简介 一个基于 ONNXRuntime、AgentOCR 和 License-Plate-Detector 项目开发的中国车牌检测识别系统。 车牌识别效果 支持多种车牌的检测和识别(其中单层车牌识别效果较好): 单层车牌: [[[[373, 282], [69, 284],

AgentMaker 26 Dec 25, 2022
Eth brownie struct encoding example

eth-brownie struct encoding example Overview This repository contains an example of encoding a struct, so that it can be used in a function call, usin

Ittai Svidler 2 Mar 04, 2022
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022
Official Implementation of "Designing an Encoder for StyleGAN Image Manipulation"

Designing an Encoder for StyleGAN Image Manipulation (SIGGRAPH 2021) Recently, there has been a surge of diverse methods for performing image editing

749 Jan 09, 2023
How to Learn a Domain Adaptive Event Simulator? ACM MM, 2021

LETGAN How to Learn a Domain Adaptive Event Simulator? ACM MM 2021 Running Environment: pytorch=1.4, 1 NVIDIA-1080TI. More details can be found in pap

CVTEAM 4 Sep 20, 2022
ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation

ST++ This is the official PyTorch implementation of our paper: ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation. Lihe Ya

Lihe Yang 147 Jan 03, 2023
One Million Scenes for Autonomous Driving

ONCE Benchmark This is a reproduced benchmark for 3D object detection on the ONCE (One Million Scenes) dataset. The code is mainly based on OpenPCDet.

148 Dec 28, 2022
This repository contains the code used to quantitatively evaluate counterfactual examples in the associated paper.

On Quantitative Evaluations of Counterfactuals Install To install required packages with conda, run the following command: conda env create -f requi

Frederik Hvilshøj 1 Jan 16, 2022