OpenIPDM is a MATLAB open-source platform that stands for infrastructures probabilistic deterioration model

Overview

Open-Source Toolbox for Infrastructures Probabilistic Deterioration Modelling

OpenIPDM is a MATLAB open-source platform that stands for infrastructures probabilistic deterioration model. This software is developed to perform analyses on a network-scale visual inspection data, while accounting for the uncertainty associated with each inspector. The main application window in OpenIPDM enables assessing the structural deterioration behaviour and the effect of interventions at different levels starting from the structural element level up to the network level. OpenIPDM also include several toolboxes that facilitate performing verification and validation analyses on visual inspection data, in addition to learning model parameters. Furthermore, OpenIPDM has the capacity to handle missing data such as, missing interventions or missing structural attributes.

For tutorials, see: YouTube channel.

How to cite

OpenIPDM: A Probabilistic Framework for Estimating the Deterioration and Effect of Interventions on Bridges
Hamida, Z., Laurent, B. and Goulet, J.-A.
SoftwareX (Submitted, January 2022)

Prerequisites

  • Matlab (version 2020b or higher) installed on Mac OSX or Windows.

  • The Matlab Statistics and Machine Learning Toolbox is required.

  • Access to GPU computing (required only for Model Training toolbox)

  • Figures for LaTeX matlab2tikz (Optional)

Installation

  1. Download and extract the ZIP file or clone the git repository in your working directory.
  2. The working directory should include the following folders:
    • Scripts
    • Tools
    • Parameters
    • Network Data
    • Figures
    • ExtractedData
    • Help
  3. Double-click OpenIPDM.mlapp file to start MATLAB App Designer, and from the top ribbon in App Designer, click Run

Getting started

After starting OpenIPDM, the main user interface will open along with a message box to load the database. Note that the message box will not show up, if pre-processed data already exist in the folder Network Data. If you do not see anything except Matlab errors verify your Matlab version, and your Matlab path.

Input

OpenIPDM takes as an input two types of file formats

  1. '.csv': this file format is generally considered for the raw database.
  2. '.mat': for files containing model paramters and/or pre-processed database.

Output

OpenIPDM generally provides the following outputs:

  1. Deterioration state estimates.
  2. Service-life of an intervention.
  3. Effect of interventions.
  4. Synthetic time series of visual inspections.

Further details about the outputs can be found in the OpenIPDM documentation manual.

Remarks

The OpenIPDM package is originally developed based on the inspection and interventions database of the Transportation Ministry of Quebec (MTQ).

Built With

Contributing

Please read CONTRIBUTING.md for details on the process for submitting pull requests.

Authors

  • Zachary Hamida - Methodology, initial code and development - webpage
  • Blanche Laurent - Analytical inference for inspectors uncertainty - webpage
  • James-A. Goulet - Methodology - webpage

License

This project is licensed under the MIT license - see the LICENSE file for details

Acknowledgments

Owner
CIVML
CIVML
Transformer model implemented with Pytorch

transformer-pytorch Transformer model implemented with Pytorch Attention is all you need-[Paper] Architecture Self-Attention self_attention.py class

Mingu Kang 12 Sep 03, 2022
code for Grapadora research paper experimentation

Road feature embedding selection method Code for research paper experimentation Abstract Traffic forecasting models rely on data that needs to be sens

Eric López Manibardo 0 May 26, 2022
[ACL-IJCNLP 2021] Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning

CLNER The code is for our ACL-IJCNLP 2021 paper: Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning CLNER is a

71 Dec 08, 2022
Code and Resources for the Transformer Encoder Reasoning Network (TERN)

Transformer Encoder Reasoning Network Code for the cross-modal visual-linguistic retrieval method from "Transformer Reasoning Network for Image-Text M

Nicola Messina 53 Dec 30, 2022
Source code for CVPR 2020 paper "Learning to Forget for Meta-Learning"

L2F - Learning to Forget for Meta-Learning Sungyong Baik, Seokil Hong, Kyoung Mu Lee Source code for CVPR 2020 paper "Learning to Forget for Meta-Lear

Sungyong Baik 29 May 22, 2022
A package for "Procedural Content Generation via Reinforcement Learning" OpenAI Gym interface.

Readme: Illuminating Diverse Neural Cellular Automata for Level Generation This is the codebase used to generate the results presented in the paper av

Sam Earle 27 Jan 05, 2023
BBB streaming without Xorg and Pulseaudio and Chromium and other nonsense (heavily WIP)

BBB Streamer NG? Makes a conference like this... ...streamable like this! I also recorded a small video showing the basic features: https://www.youtub

Lukas Schauer 60 Oct 21, 2022
PyTorch Lightning implementation of Automatic Speech Recognition

lasr Lightening Automatic Speech Recognition An MIT License ASR research library, built on PyTorch-Lightning, for developing end-to-end ASR models. In

Soohwan Kim 40 Sep 19, 2022
[CVPR 2016] Unsupervised Feature Learning by Image Inpainting using GANs

Context Encoders: Feature Learning by Inpainting CVPR 2016 [Project Website] [Imagenet Results] Sample results on held-out images: This is the trainin

Deepak Pathak 829 Dec 31, 2022
Pytorch implementation of COIN, a framework for compression with implicit neural representations 🌸

COIN 🌟 This repo contains a Pytorch implementation of COIN: COmpression with Implicit Neural representations, including code to reproduce all experim

Emilien Dupont 104 Dec 14, 2022
scikit-learn: machine learning in Python

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license. The project was started

scikit-learn 52.5k Jan 08, 2023
Go from graph data to a secure and interactive visual graph app in 15 minutes. Batteries-included self-hosting of graph data apps with Streamlit, Graphistry, RAPIDS, and more!

✔️ Linux ✔️ OS X ❌ Windows (#39) Welcome to graph-app-kit Turn your graph data into a secure and interactive visual graph app in 15 minutes! Why This

Graphistry 107 Jan 02, 2023
MultiLexNorm 2021 competition system from ÚFAL

ÚFAL at MultiLexNorm 2021: Improving Multilingual Lexical Normalization by Fine-tuning ByT5 David Samuel & Milan Straka Charles University Faculty of

ÚFAL 13 Jun 28, 2022
Official repository for the paper "Going Beyond Linear Transformers with Recurrent Fast Weight Programmers"

Recurrent Fast Weight Programmers This is the official repository containing the code we used to produce the experimental results reported in the pape

IDSIA 36 Nov 15, 2022
Code accompanying the paper Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs (Chen et al., CVPR 2020, Oral).

Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs This repository contains PyTorch implementation of our pa

Shizhe Chen 178 Dec 29, 2022
A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines

A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines Understanding the results of deep neural networks is

Johan van den Heuvel 2 Dec 13, 2021
Genetic Programming in Python, with a scikit-learn inspired API

Welcome to gplearn! gplearn implements Genetic Programming in Python, with a scikit-learn inspired and compatible API. While Genetic Programming (GP)

Trevor Stephens 1.3k Jan 03, 2023
RoBERTa Marathi Language model trained from scratch during huggingface 🤗 x flax community week

RoBERTa base model for Marathi Language (मराठी भाषा) Pretrained model on Marathi language using a masked language modeling (MLM) objective. RoBERTa wa

Nipun Sadvilkar 23 Oct 19, 2022
Efficient face emotion recognition in photos and videos

This repository contains code of face emotion recognition that was developed in the RSF (Russian Science Foundation) project no. 20-71-10010 (Efficien

Andrey Savchenko 239 Jan 04, 2023
tree-math: mathematical operations for JAX pytrees

tree-math: mathematical operations for JAX pytrees tree-math makes it easy to implement numerical algorithms that work on JAX pytrees, such as iterati

Google 137 Dec 28, 2022