GndNet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles using deep neural networks.

Overview

GndNet: Fast Ground plane Estimation and Point Cloud Segmentation for Autonomous Vehicles.

Authors: Anshul Paigwar, Ozgur Erkent, David Sierra Gonzalez, Christian Laugier

drawing

Introduction

This repository is code release for our GndNet paper accepted in International conference on Robotic Systems, IROS 2020. Link

Abstract

Ground plane estimation and ground point seg-mentation is a crucial precursor for many applications in robotics and intelligent vehicles like navigable space detection and occupancy grid generation, 3D object detection, point cloud matching for localization and registration for mapping. In this paper, we present GndNet, a novel end-to-end approach that estimates the ground plane elevation information in a grid-based representation and segments the ground points simultaneously in real-time. GndNet uses PointNet and Pillar Feature Encoding network to extract features and regresses ground height for each cell of the grid. We augment the SemanticKITTI dataset to train our network. We demonstrate qualitative and quantitative evaluation of our results for ground elevation estimation and semantic segmentation of point cloud. GndNet establishes a new state-of-the-art, achieves a run-time of 55Hz for ground plane estimation and ground point segmentation. drawing

Installation

We have tested the algorithm on the system with Ubuntu 18.04, 12 GB RAM and NVIDIA GTX-1080.

Dependencies

Python 3.6
CUDA (tested on 10.1)
PyTorch (tested on 1.4)
scipy
ipdb
argparse
numba

Visualization

For visualisation of the ground estimation, semantic segmentation of pointcloud, and easy integration with our real system we use Robot Operating System (ROS):

ROS
ros_numpy

Data Preparation

We train our model using the augmented SematicKITTI dataset. A sample data is provided in this repository, while the full dataset can be downloaded from link. We use the following procedure to generate our dataset:

  • We first crop the point cloud within the range of (x, y) = [(-50, -50), (50, 50)] and apply incremental rotation [-10, 10] degrees about the X and Y axis to generate data with varying slopes and uphills. (SemanticKITTI dataset is recorded with mostly flat terrain)
  • Augmented point cloud is stored as a NumPy file in the folder reduced_velo.
  • To generate ground elevation labels we then use the CRF-based surface fitting method as described in [1].
  • We subdivide object classes in SematicKITTI dataset into two categories
    1. Ground (road, sidewalk, parking, other-ground, vegetation, terrain)
    2. Non-ground (all other)
  • We filter out non-ground points from reduced_velo and use CRF-method [1] only with the ground points to generate an elevation map.
  • Our ground elevation is represented as a 2D grid with cell resolution 1m x 1m and of size (x, y) = [(-50, -50), (50, 50)], where values of each cell represent the local ground elevation.
  • Ground elevation map is stored as NumPy file in gnd_labels folder.
  • Finally, GndNet uses gnd_labels and reduced_velo (consisting of both ground and non-ground points) for training.

If you find the dataset useful consider citing our work and for queries regarding the dataset please contact the authors.

Training

To train the model update the data directory path in the config file: config_kittiSem.yaml

python main.py -s

It takes around 6 hours for the network to converge and model parameters would be stored in checkpoint.pth.tar file. A pre-trained model is provided in the trained_models folder it can be used to evaluate a sequence in the SemanticKITTI dataset.

python evaluate_SemanticKITTI.py --resume checkpoint.pth.tar --data_dir /home/.../kitti_semantic/dataset/sequences/07/

Using pre-trained model

Download the SemanticKITTI dataset from their website link. To visualize the output we use ROS and rviz. The predicted class (ground or non-ground) of the points in the point cloud is substituted in the intensity field of sensor_msgs.pointcloud. In the rviz use intensity as a color transformer to visualize segmented pointcloud. For the visualization of ground elevation, we use the ROS line marker.

roscore
rviz
python evaluate_SemanticKITTI.py --resume trained_models/checkpoint.pth.tar -v -gnd --data_dir /home/.../SemanticKITTI/dataset/sequences/00/

Note: The current version of the code for visualization is written in python which can be very slow specifically the generation of ROS marker. To only visualize segmentation output without ground elevation remove the -gnd flag.

Results

Semantic segmentation of point cloud ground (green) and non-ground (purple):

drawing

Ground elevation estimation:

drawing

YouTube video (Segmentation):

IMAGE ALT TEXT HERE

YouTube video (Ground Estimation):

IMAGE ALT TEXT HERE

TODO

  • Current dataloader loads the entire dataset into RAM first, this reduces training time but it can be hog systems with low RAM.
  • Speed up visualization of ground elevation. Write C++ code for ROS marker.
  • Create generalized ground elevation dataset to be with correspondence to SemanticKitti to be made public.

Citation

If you find this project useful in your research, please consider citing our work:

@inproceedings{paigwar2020gndnet,
  title={GndNet: Fast Ground Plane Estimation and Point Cloud Segmentation for Autonomous Vehicles},
  author={Paigwar, Anshul and Erkent, {\"O}zg{\"u}r and Gonz{\'a}lez, David Sierra and Laugier, Christian},
  booktitle={IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
  year={2020}
}

Contribution

We welcome you for contributing to this repo, and feel free to contact us for any potential bugs and issues.

References

[1] L. Rummelhard, A. Paigwar, A. Nègre and C. Laugier, "Ground estimation and point cloud segmentation using SpatioTemporal Conditional Random Field," 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, 2017, pp. 1105-1110, doi: 10.1109/IVS.2017.7995861.

[2] Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S., Stachniss, C., & Gall, J. (2019). SemanticKITTI: A dataset for semantic scene understanding of lidar sequences. In Proceedings of the IEEE International Conference on Computer Vision (pp. 9297-9307).

Owner
Anshul Paigwar
Research Engineer at Inria, Grenoble, France
Anshul Paigwar
GMFlow: Learning Optical Flow via Global Matching

GMFlow GMFlow: Learning Optical Flow via Global Matching Authors: Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, Dacheng Tao We streamline the

Haofei Xu 298 Jan 04, 2023
Automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azure

fwhr-calc-website This project is to automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azur

SoohyunPark 1 Feb 07, 2022
The implementation of CVPR2021 paper Temporal Query Networks for Fine-grained Video Understanding, by Chuhan Zhang, Ankush Gupta and Andrew Zisserman.

Temporal Query Networks for Fine-grained Video Understanding 📋 This repository contains the implementation of CVPR2021 paper Temporal_Query_Networks

55 Dec 21, 2022
Training PSPNet in Tensorflow. Reproduce the performance from the paper.

Training Reproduce of PSPNet. (Updated 2021/04/09. Authors of PSPNet have provided a Pytorch implementation for PSPNet and their new work with support

Li Xuhong 126 Jul 13, 2022
Here we present the implementation in TensorFlow of our work about liver lesion segmentation accepted in the Machine Learning 4 Health Workshop

Detection-aided liver lesion segmentation Here we present the implementation in TensorFlow of our work about liver lesion segmentation accepted in the

Image Processing Group - BarcelonaTECH - UPC 96 Oct 26, 2022
Our CIKM21 Paper "Incorporating Query Reformulating Behavior into Web Search Evaluation"

Reformulation-Aware-Metrics Introduction This codebase contains source-code of the Python-based implementation of our CIKM 2021 paper. Chen, Jia, et a

xuanyuan14 5 Mar 05, 2022
Merlion: A Machine Learning Framework for Time Series Intelligence

Merlion: A Machine Learning Library for Time Series Table of Contents Introduction Installation Documentation Getting Started Anomaly Detection Foreca

Salesforce 2.8k Dec 30, 2022
LSTM built using Keras Python package to predict time series steps and sequences. Includes sin wave and stock market data

LSTM Neural Network for Time Series Prediction LSTM built using the Keras Python package to predict time series steps and sequences. Includes sine wav

Jakob Aungiers 4.1k Jan 02, 2023
ICLR 2021, Fair Mixup: Fairness via Interpolation

Fair Mixup: Fairness via Interpolation Training classifiers under fairness constraints such as group fairness, regularizes the disparities of predicti

Ching-Yao Chuang 49 Nov 22, 2022
A rule-based log analyzer & filter

Flog 一个根据规则集来处理文本日志的工具。 前言 在日常开发过程中,由于缺乏必要的日志规范,导致很多人乱打一通,一个日志文件夹解压缩后往往有几十万行。 日志泛滥会导致信息密度骤减,给排查问题带来了不小的麻烦。 以前都是用grep之类的工具先挑选出有用的,再逐条进行排查,费时费力。在忍无可忍之后决

上山打老虎 9 Jun 23, 2022
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
Live training loss plot in Jupyter Notebook for Keras, PyTorch and others

livelossplot Don't train deep learning models blindfolded! Be impatient and look at each epoch of your training! (RECENT CHANGES, EXAMPLES IN COLAB, A

Piotr Migdał 1.2k Jan 08, 2023
Official Implementation of DDOD (Disentangle your Dense Object Detector), ACM MM2021

Disentangle Your Dense Object Detector This repo contains the supported code and configuration files to reproduce object detection results of Disentan

loveSnowBest 51 Jan 07, 2023
Source code for our paper "Do Not Trust Prediction Scores for Membership Inference Attacks"

Do Not Trust Prediction Scores for Membership Inference Attacks Abstract: Membership inference attacks (MIAs) aim to determine whether a specific samp

<a href=[email protected]"> 3 Oct 25, 2022
Uses OpenCV and Python Code to detect a face on the screen

Simple-Face-Detection This code uses OpenCV and Python Code to detect a face on the screen. This serves as an example program. Important prerequisites

Denis Woolley (CreepyD) 1 Feb 12, 2022
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022
Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations

Transfer-Learning-in-Reinforcement-Learning Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations Final Report Tra

Trung Hieu Tran 4 Oct 17, 2022
Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021)

UNITE and UNITE+ Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021) Unbalanced Intrinsic Feature Transport for Exemplar-bas

Fangneng Zhan 183 Nov 09, 2022
Double pendulum simulator using a symplectic Euler's method and Hamiltonian mechanics

Symplectic Double Pendulum Simulator Double pendulum simulator using a symplectic Euler's method. The program calculates the momentum and position of

Scott Marino 1 Jan 12, 2022
An unopinionated replacement for PyTorch's Dataset and ImageFolder, that handles Tar archives

Simple Tar Dataset An unopinionated replacement for PyTorch's Dataset and ImageFolder classes, for datasets stored as uncompressed Tar archives. Just

Joao Henriques 47 Dec 20, 2022