Code for our paper "Graph Pre-training for AMR Parsing and Generation" in ACL2022

Overview

AMRBART

An implementation for ACL2022 paper "Graph Pre-training for AMR Parsing and Generation". You may find our paper here (Arxiv).

PWC

PWC

PWC

PWC

Requirements

  • python 3.8
  • pytorch 1.8
  • transformers 4.8.2
  • pytorch-lightning 1.5.0
  • Tesla V100 or A100

We recommend to use conda to manage virtual environments:

conda env update --name <env> --file requirements.yml

We also provide a docker image here.

Data Processing

You may download the AMR corpora at LDC.

We follow Spring to preprocess AMR graphs:

# 1. install spring 
cd spring && pip install -e .
# 2. processing data
bash run-preprocess.sh

Pre-training

bash run-posttrain-bart-textinf-joint-denoising-6task-large-unified-V100.sh /path/to/BART/

Fine-tuning

For AMR Parsing, run

bash finetune_AMRbart_amrparsing.sh /path/to/pre-trained/AMRBART/ gpu_id

For AMR-to-text Generation, run

bash finetune_AMRbart_amr2text.sh /path/to/pre-trained/AMRBART/ gpu_id

Evaluation

For AMR Parsing, run

bash eval_AMRbart_amrparsing.sh /path/to/fine-tuned/AMRBART/ gpu_id

For AMR-to-text Generation, run

bash eval_AMRbart_amr2text.sh /path/to/fine-tuned/AMRBART/ gpu_id

Inference on your own data

If you want to run our code on your own data, try to transform your data into the format here, then run

For AMR Parsing, run

bash inference_amr.sh /path/to/fine-tuned/AMRBART/ gpu_id

For AMR-to-text Generation, run

bash inference_text.sh /path/to/fine-tuned/AMRBART/ gpu_id

Pre-trained Models

Pre-trained AMRBART

Setting Params checkpoint
AMRBART-base 142M model
AMRBART-large 409M model

Fine-tuned models on AMR-to-Text Generation

Setting BLEU(tok) BLEU(detok) checkpoint output
AMRBART-large (AMR2.0) 49.8 45.7 model output
AMRBART-large (AMR3.0) 49.2 45.0 model output

To get the tokenized bleu score, you need to use the scorer we provide here. We use this script in order to ensure comparability with previous approaches.

Fine-tuned models on AMR Parsing

Setting Smatch checkpoint output
AMRBART-large (AMR2.0) 85.4 model output
AMRBART-large (AMR3.0) 84.2 model output

Todo

  • clean code

References

@inproceedings{bai-etal-2022-graph,
    title = "Graph Pre-training for {AMR} Parsing and Generation",
    author = "Bai, Xuefeng  and
      Chen, Yulong and
      Zhang, Yue",
    booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
    month = may,
    year = "2022",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "todo",
    doi = "todo",
    pages = "todo"
}
Owner
xfbai
Actions speak louder than words
xfbai
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives

HashNeRF-pytorch Instant-NGP recently introduced a Multi-resolution Hash Encodin

Yash Sanjay Bhalgat 616 Jan 06, 2023
FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction

FaceExtraction FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction Occlusions often occur in face images in the wild, tr

16 Dec 14, 2022
(CVPR 2021) Lifting 2D StyleGAN for 3D-Aware Face Generation

Lifting 2D StyleGAN for 3D-Aware Face Generation Official implementation of paper "Lifting 2D StyleGAN for 3D-Aware Face Generation". Requirements You

Yichun Shi 66 Nov 29, 2022
Detectorch - detectron for PyTorch

Detectorch - detectron for PyTorch (Disclaimer: this is work in progress and does not feature all the functionalities of detectron. Currently only inf

Ignacio Rocco 558 Dec 23, 2022
Label Studio is a multi-type data labeling and annotation tool with standardized output format

Website • Docs • Twitter • Join Slack Community What is Label Studio? Label Studio is an open source data labeling tool. It lets you label data types

Heartex 11.7k Jan 09, 2023
A transformer model to predict pathogenic mutations

MutFormer MutFormer is an application of the BERT (Bidirectional Encoder Representations from Transformers) NLP (Natural Language Processing) model wi

Wang Genomics Lab 2 Nov 29, 2022
Permeability Prediction Via Multi Scale 3D CNN

Permeability-Prediction-Via-Multi-Scale-3D-CNN Data: The raw CT rock cores are obtained from the Imperial Colloge portal. The CT rock cores are sub-sa

Mohamed Elmorsy 2 Jul 06, 2022
Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Octavio Arriaga 5.3k Dec 30, 2022
Code for "Optimizing risk-based breast cancer screening policies with reinforcement learning"

Tempo: Optimizing risk-based breast cancer screening policies with reinforcement learning Introduction This repository was used to develop Tempo, as d

Adam Yala 12 Oct 11, 2022
CVPRW 2021: How to calibrate your event camera

E2Calib: How to Calibrate Your Event Camera This repository contains code that implements video reconstruction from event data for calibration as desc

Robotics and Perception Group 104 Nov 16, 2022
Vehicle direction identification consists of three module detection , tracking and direction recognization.

Vehicle-direction-identification Vehicle direction identification consists of three module detection , tracking and direction recognization. Algorithm

5 Nov 15, 2022
NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs.

NAS-HPO-Bench-II API Overview NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs. It helps a fair and low-

yoichi hirose 8 Nov 21, 2022
Deep Reinforcement Learning based Trading Agent for Bitcoin

Deep Trading Agent Deep Reinforcement Learning based Trading Agent for Bitcoin using DeepSense Network for Q function approximation. For complete deta

Kartikay Garg 669 Dec 29, 2022
A concise but complete implementation of CLIP with various experimental improvements from recent papers

x-clip (wip) A concise but complete implementation of CLIP with various experimental improvements from recent papers Install $ pip install x-clip Usag

Phil Wang 515 Dec 26, 2022
Degree-Quant: Quantization-Aware Training for Graph Neural Networks.

Degree-Quant This repo provides a clean re-implementation of the code associated with the paper Degree-Quant: Quantization-Aware Training for Graph Ne

35 Oct 07, 2022
Json2Xml tool will help you convert from json COCO format to VOC xml format in Object Detection Problem.

JSON 2 XML All codes assume running from root directory. Please update the sys path at the beginning of the codes before running. Over View Json2Xml t

Nguyễn Trường Lâu 6 Aug 22, 2022
Code for "Diffusion is All You Need for Learning on Surfaces"

Source code for "Diffusion is All You Need for Learning on Surfaces", by Nicholas Sharp Souhaib Attaiki Keenan Crane Maks Ovsjanikov NOTE: the linked

Nick Sharp 247 Dec 28, 2022
PyTorch Implementation of Spatially Consistent Representation Learning(SCRL)

Spatially Consistent Representation Learning (CVPR'21) Official PyTorch implementation of Spatially Consistent Representation Learning (SCRL). This re

Kakao Brain 102 Nov 03, 2022
Kohei's 5th place solution for xview3 challenge

xview3-kohei-solution Usage This repository assumes that the given data set is stored in the following locations: $ ls data/input/xview3/*.csv data/in

Kohei Ozaki 2 Jan 17, 2022
Robustness via Cross-Domain Ensembles

Robustness via Cross-Domain Ensembles [ICCV 2021, Oral] This repository contains tools for training and evaluating: Pretrained models Demo code Traini

Visual Intelligence & Learning Lab, Swiss Federal Institute of Technology (EPFL) 27 Dec 23, 2022