Deep Reinforcement Learning based Trading Agent for Bitcoin

Overview

Deep Trading Agent

license dep1 dep2 dep3 dep4 dep4
Deep Reinforcement Learning based Trading Agent for Bitcoin using DeepSense Network for Q function approximation.

model
For complete details of the dataset, preprocessing, network architecture and implementation, refer to the Wiki of this repository.

Requirements

  • Python 2.7
  • Tensorflow
  • Pandas (for pre-processing Bitcoin Price Series)
  • tqdm (for displaying progress of training)

To setup a ubuntu virtual machine with all the dependencies to run the code, refer to assets/vm.

Run with Docker

Pull the prebuilt docker image directly from docker hub and run it as

docker pull samre12/deep-trading-agent:latest
docker run -p 6006:6006 -it samre12/deep-trading-agent:latest

OR

Build the docker image locally by executing the command and the run the image as

docker build -t deep-trading-agent .
docker run -p 6006:6006 -it deep-trading-agent

This will setup the repository for training the agent and

  • mount the current directory into /deep-trading-agent in the container

  • during image build, the latest transactions history from the exchange is pulled and sampled to create per-minute scale dataset of Bitcoin prices. This dataset is placed at /deep-trading-agent/data/btc.csv

  • to initiate training of the agent, specify suitable parameters in a config file (an example config file is provided at /deep-trading-agent/code/config/config.cfg) and run the code using /deep-trading-agent/code/main.py

  • training supports logging and monitoring through Tensorboard

  • vim and screen are installed in the container to edit the configuration files and run tensorboard

  • bind port 6006 of container to 6006 of host machine to monitor training using Tensorboard

Support

Please give a to this repository to support the project 😄 .

ToDo

Docker Support

  • Add Docker support for a fast and easy start with the project

Improve Model performance

  • Extract highest and lowest prices and the volume of Bitcoin traded within a given time interval in the Preprocessor
  • Use closing, highest, lowest prices and the volume traded as input channels to the model (remove features calculated just using closing prices)
  • Normalize the price tensors using the price of the previous time step
  • For the complete state representation, input the remaining number of trades to the model
  • Use separate diff price blocks to calculate the unrealized PnL
  • Use exponentially decayed weighted unrealized PnL as a reward function to incorporate current state of investment and stabilize the learning of the agent

Trading Model

is inspired by Deep Q-Trading where they solve a simplified trading problem for a single asset.
For each trading unit, only one of the three actions: neutral(1), long(2) and short(3) are allowed and a reward is obtained depending upon the current position of agent. Deep Q-Learning agent is trained to maximize the total accumulated rewards.
Current Deep Q-Trading model is modified by using the Deep Sense architecture for Q function approximation.

Dataset

Per minute Bitcoin series is obtained by modifying the procedure mentioned in this repository. Transactions in the Coinbase exchange are sampled to generate the Bitcoin price series.
Refer to assets/dataset to download the dataset.

Preprocessing

Basic Preprocessing
Completely ignore missing values and remove them from the dataset and accumulate blocks of continuous values using the timestamps of the prices.
All the accumulated blocks with number of timestamps lesser than the combined history length of the state and horizon of the agent are then filtered out since they cannot be used for training of the agent.
In the current implementation, past 3 hours (180 minutes) of per minute Bitcoin prices are used to generate the representation of the current state of the agent.
With the existing dataset (at the time of writing), following are the logs generated while preprocessing the dataset:

INFO:root:Number of blocks of continuous prices found are 58863
INFO:root:Number of usable blocks obtained from the dataset are 887
INFO:root:Number of distinct episodes for the current configuration are 558471

Advanced Preprocessing
Process missing values and concatenate smaller blocks to increase the sizes of continuous price blocks.
Standard technique in literature to fill the missing values in a way that does not much affect the performance of the model is using exponential filling with no decay.
(To be implemented)

Implementation

Tensorflow "1.1.0" version is used for the implementation of the Deep Sense network.

Deep Sense

Implementation is adapted from this Github repository with a few simplifications in the network architecture to incorporate learning over a single time series of the Bitcoin data.

Deep Q Trading

Implementation and preprocessing is inspired from this Medium post. The actual implementation of the Deep Q Network is adapted from DQN-tensorflow.

Owner
Kartikay Garg
Major in Mathematics and Computing
Kartikay Garg
PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"

Adam-NSCL This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper: Title: Training Networks in N

Shipeng Wang 34 Dec 21, 2022
Official implement of "CAT: Cross Attention in Vision Transformer".

CAT: Cross Attention in Vision Transformer This is official implement of "CAT: Cross Attention in Vision Transformer". Abstract Since Transformer has

100 Dec 15, 2022
Google-drive-to-sqlite - Create a SQLite database containing metadata from Google Drive

google-drive-to-sqlite Create a SQLite database containing metadata from Google

Simon Willison 140 Dec 04, 2022
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
PyTorch implementation of SIFT descriptor

This is an differentiable pytorch implementation of SIFT patch descriptor. It is very slow for describing one patch, but quite fast for batch. It can

Dmytro Mishkin 150 Dec 24, 2022
Official Pytorch Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images.

IAug_CDNet Official Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images. Overview We propose a

53 Dec 02, 2022
Convnet transfer - Code for paper How transferable are features in deep neural networks?

How transferable are features in deep neural networks? This repository contains source code necessary to reproduce the results presented in the follow

Jason Yosinski 143 Sep 13, 2022
ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin et al., 2020).

ReConsider ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin

Facebook Research 47 Jul 26, 2022
The Malware Open-source Threat Intelligence Family dataset contains 3,095 disarmed PE malware samples from 454 families

MOTIF Dataset The Malware Open-source Threat Intelligence Family (MOTIF) dataset contains 3,095 disarmed PE malware samples from 454 families, labeled

Booz Allen Hamilton 112 Dec 13, 2022
Cleaned up code for DSTC 10: SIMMC 2.0 track: subtask 2: multimodal coreference resolution

UNITER-Based Situated Coreference Resolution with Rich Multimodal Input: arXiv MMCoref_cleaned Code for the MMCoref task of the SIMMC 2.0 dataset. Pre

Yichen (William) Huang 2 Dec 05, 2022
Select, weight and analyze complex sample data

Sample Analytics In large-scale surveys, often complex random mechanisms are used to select samples. Estimates derived from such samples must reflect

samplics 37 Dec 15, 2022
⚡ H2G-Net for Semantic Segmentation of Histopathological Images

H2G-Net This repository contains the code relevant for the proposed design H2G-Net, which was introduced in the manuscript "Hybrid guiding: A multi-re

André Pedersen 8 Nov 24, 2022
Torch implementation of various types of GAN (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN, LSGAN)

gans-collection.torch Torch implementation of various types of GANs (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN). Note that EBGAN and

Minchul Shin 53 Jan 22, 2022
Official code of Team Yao at Multi-Modal-Fact-Verification-2022

Official code of Team Yao at Multi-Modal-Fact-Verification-2022 A Multi-Modal Fact Verification dataset released as part of the De-Factify workshop in

Wei-Yao Wang 11 Nov 15, 2022
A Model for Natural Language Attack on Text Classification and Inference

TextFooler A Model for Natural Language Attack on Text Classification and Inference This is the source code for the paper: Jin, Di, et al. "Is BERT Re

Di Jin 418 Dec 16, 2022
(ICCV 2021 Oral) Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation.

DARS Code release for the paper "Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation", ICCV 2021

CVMI Lab 58 Jan 01, 2023
Official PyTorch implementation of UACANet: Uncertainty Aware Context Attention for Polyp Segmentation

UACANet: Uncertainty Aware Context Attention for Polyp Segmentation Official pytorch implementation of UACANet: Uncertainty Aware Context Attention fo

Taehun Kim 85 Dec 14, 2022
Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks"

HKD Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks" cifia-100 result The implementation of compared methods are ba

Wang Yucheng 30 Dec 18, 2022
Car Price Predictor App used to predict the price of the car based on certain input parameters created using python's scikit-learn, fastapi, numpy and joblib packages.

Pricefy Car Price Predictor App used to predict the price of the car based on certain input parameters created using python's scikit-learn, fastapi, n

Siva Prakash 1 May 10, 2022
CVPR 2020 oral paper: Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax.

Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax ⚠️ Latest: Current repo is a complete version. But we delet

FishYuLi 341 Dec 23, 2022