Deep Reinforcement Learning based Trading Agent for Bitcoin

Overview

Deep Trading Agent

license dep1 dep2 dep3 dep4 dep4
Deep Reinforcement Learning based Trading Agent for Bitcoin using DeepSense Network for Q function approximation.

model
For complete details of the dataset, preprocessing, network architecture and implementation, refer to the Wiki of this repository.

Requirements

  • Python 2.7
  • Tensorflow
  • Pandas (for pre-processing Bitcoin Price Series)
  • tqdm (for displaying progress of training)

To setup a ubuntu virtual machine with all the dependencies to run the code, refer to assets/vm.

Run with Docker

Pull the prebuilt docker image directly from docker hub and run it as

docker pull samre12/deep-trading-agent:latest
docker run -p 6006:6006 -it samre12/deep-trading-agent:latest

OR

Build the docker image locally by executing the command and the run the image as

docker build -t deep-trading-agent .
docker run -p 6006:6006 -it deep-trading-agent

This will setup the repository for training the agent and

  • mount the current directory into /deep-trading-agent in the container

  • during image build, the latest transactions history from the exchange is pulled and sampled to create per-minute scale dataset of Bitcoin prices. This dataset is placed at /deep-trading-agent/data/btc.csv

  • to initiate training of the agent, specify suitable parameters in a config file (an example config file is provided at /deep-trading-agent/code/config/config.cfg) and run the code using /deep-trading-agent/code/main.py

  • training supports logging and monitoring through Tensorboard

  • vim and screen are installed in the container to edit the configuration files and run tensorboard

  • bind port 6006 of container to 6006 of host machine to monitor training using Tensorboard

Support

Please give a to this repository to support the project 😄 .

ToDo

Docker Support

  • Add Docker support for a fast and easy start with the project

Improve Model performance

  • Extract highest and lowest prices and the volume of Bitcoin traded within a given time interval in the Preprocessor
  • Use closing, highest, lowest prices and the volume traded as input channels to the model (remove features calculated just using closing prices)
  • Normalize the price tensors using the price of the previous time step
  • For the complete state representation, input the remaining number of trades to the model
  • Use separate diff price blocks to calculate the unrealized PnL
  • Use exponentially decayed weighted unrealized PnL as a reward function to incorporate current state of investment and stabilize the learning of the agent

Trading Model

is inspired by Deep Q-Trading where they solve a simplified trading problem for a single asset.
For each trading unit, only one of the three actions: neutral(1), long(2) and short(3) are allowed and a reward is obtained depending upon the current position of agent. Deep Q-Learning agent is trained to maximize the total accumulated rewards.
Current Deep Q-Trading model is modified by using the Deep Sense architecture for Q function approximation.

Dataset

Per minute Bitcoin series is obtained by modifying the procedure mentioned in this repository. Transactions in the Coinbase exchange are sampled to generate the Bitcoin price series.
Refer to assets/dataset to download the dataset.

Preprocessing

Basic Preprocessing
Completely ignore missing values and remove them from the dataset and accumulate blocks of continuous values using the timestamps of the prices.
All the accumulated blocks with number of timestamps lesser than the combined history length of the state and horizon of the agent are then filtered out since they cannot be used for training of the agent.
In the current implementation, past 3 hours (180 minutes) of per minute Bitcoin prices are used to generate the representation of the current state of the agent.
With the existing dataset (at the time of writing), following are the logs generated while preprocessing the dataset:

INFO:root:Number of blocks of continuous prices found are 58863
INFO:root:Number of usable blocks obtained from the dataset are 887
INFO:root:Number of distinct episodes for the current configuration are 558471

Advanced Preprocessing
Process missing values and concatenate smaller blocks to increase the sizes of continuous price blocks.
Standard technique in literature to fill the missing values in a way that does not much affect the performance of the model is using exponential filling with no decay.
(To be implemented)

Implementation

Tensorflow "1.1.0" version is used for the implementation of the Deep Sense network.

Deep Sense

Implementation is adapted from this Github repository with a few simplifications in the network architecture to incorporate learning over a single time series of the Bitcoin data.

Deep Q Trading

Implementation and preprocessing is inspired from this Medium post. The actual implementation of the Deep Q Network is adapted from DQN-tensorflow.

Owner
Kartikay Garg
Major in Mathematics and Computing
Kartikay Garg
Simulations for Turring patterns on an apically expanding domain. T

Turing patterns on expanding domain Simulations for Turring patterns on an apically expanding domain. The details about the models and numerical imple

Yue Liu 0 Aug 03, 2021
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
Official implementation of "Generating 3D Molecules for Target Protein Binding"

Generating 3D Molecules for Target Protein Binding This is the official implementation of the GraphBP method proposed in the following paper. Meng Liu

DIVE Lab, Texas A&M University 74 Dec 07, 2022
Geometric Vector Perceptron --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Code to accompany Learning from Protein Structure with Geometric Vector Perceptrons by B Jing, S Eismann, P Suriana, RJL T

Dror Lab 85 Dec 29, 2022
Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts

t5-japanese Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts. The following is a list of models that

Kimio Kuramitsu 1 Dec 13, 2021
Official repository for the CVPR 2021 paper "Learning Feature Aggregation for Deep 3D Morphable Models"

Deep3DMM Official repository for the CVPR 2021 paper Learning Feature Aggregation for Deep 3D Morphable Models. Requirements This code is tested on Py

38 Dec 27, 2022
Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

75 Nov 24, 2022
Official implementation of the paper "Topographic VAEs learn Equivariant Capsules"

Topographic Variational Autoencoder Paper: https://arxiv.org/abs/2109.01394 Getting Started Install requirements with Anaconda: conda env create -f en

T. Andy Keller 69 Dec 12, 2022
Off-policy continuous control in PyTorch, with RDPG, RTD3 & RSAC

arXiv technical report soon available. we are updating the readme to be as comprehensive as possible Please ask any questions in Issues, thanks. Intro

Zhihan 31 Dec 30, 2022
[CVPR 2021 Oral] Variational Relational Point Completion Network

VRCNet: Variational Relational Point Completion Network This repository contains the PyTorch implementation of the paper: Variational Relational Point

PL 121 Dec 12, 2022
Generate high quality pictures. GAN. Generative Adversarial Networks

ESRGAN generate high quality pictures. GAN. Generative Adversarial Networks """ Super-resolution of CelebA using Generative Adversarial Networks. The

Lieon 1 Dec 14, 2021
Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch

Neural Distance Embeddings for Biological Sequences Official implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTo

Gabriele Corso 56 Dec 23, 2022
Code release for paper: The Boombox: Visual Reconstruction from Acoustic Vibrations

The Boombox: Visual Reconstruction from Acoustic Vibrations Boyuan Chen, Mia Chiquier, Hod Lipson, Carl Vondrick Columbia University Project Website |

Boyuan Chen 12 Nov 30, 2022
Official PyTorch implementation of "Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning" (ICCV2021 Oral)

MeTAL - Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning (ICCV2021 Oral) Sungyong Baik, Janghoon Choi, Heewon Kim, Dohee Cho, Jaes

Sungyong Baik 44 Dec 29, 2022
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
Code for our work "Activation to Saliency: Forming High-Quality Labels for Unsupervised Salient Object Detection".

A2S-USOD Code for our work "Activation to Saliency: Forming High-Quality Labels for Unsupervised Salient Object Detection". Code will be released upon

15 Dec 16, 2022
ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation

ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation (Accepted by BMVC'21) Abstract: Images acquir

10 Dec 08, 2022
Code for Deep Single-image Portrait Image Relighting

Deep Single-Image Portrait Relighting [Project Page] Hao Zhou, Sunil Hadap, Kalyan Sunkavalli, David W. Jacobs. In ICCV, 2019 Overview Test script for

438 Jan 05, 2023
This repo contains code to reproduce all experiments in Equivariant Neural Rendering

Equivariant Neural Rendering This repo contains code to reproduce all experiments in Equivariant Neural Rendering by E. Dupont, M. A. Bautista, A. Col

Apple 83 Nov 16, 2022
Simple ray intersection library similar to coldet - succedeed by libacc

Ray Intersection This project offers a header only acceleration structure library including implementations for a BVH- and KD-Tree. Applications may i

Nils Moehrle 29 Jun 23, 2022