Contains code for Deep Kernelized Dense Geometric Matching

Related tags

Deep LearningDKM
Overview

DKM - Deep Kernelized Dense Geometric Matching

Contains code for Deep Kernelized Dense Geometric Matching

We provide pretrained models and code for evaluation and running on your own images. We do not curently provide code for training models, but you can basically copy paste the model code into your own training framework and run it.

Note that the performance of current models is greater than in the pre-print. This is due to continued development since submission.

Install

Run pip install -e .

Using a (Pretrained) Model

Models can be imported by:

from dkm import dkm_base
model = dkm_base(pretrained=True, version="v11")

This creates a model, and loads pretrained weights.

Running on your own images

from dkm import dkm_base
from PIL import Image
model = dkm_base(pretrained=True, version="v11")
im1, im2 = Image.open("im1.jpg"), Image.open("im2.jpg")
# Note that matches are produced in the normalized grid [-1, 1] x [-1, 1] 
dense_matches, dense_certainty = model.match(im1, im2)
# You may want to process these, e.g. we found dense_certainty = dense_certainty.sqrt() to work quite well in some cases.
# Sample 10000 sparse matches
sparse_matches, sparse_certainty = model.sample(dense_matches, dense_certainty, 10000)

Downloading Benchmarks

HPatches

First, make sure that the "data/hpatches" path exists. I usually prefer to do this by:

ln -s place/where/your/datasets/are/stored/hpatches data/hpatches

Then run (if you don't already have hpatches downloaded) bash scripts/download_hpatches.sh

Yfcc100m (OANet Split)

We use the split introduced by OANet, this split can be found from e.g. https://github.com/PruneTruong/DenseMatching

Megadepth (LoFTR Split)

Currently we do not support the LoFTR split, as we trained on one of the scenes used there. Future releases may support this split, stay tuned.

Scannet (SuperGlue Split)

We use the same split of scannet as superglue. LoFTR provides the split here: https://drive.google.com/drive/folders/1nTkK1485FuwqA0DbZrK2Cl0WnXadUZdc

Evaluation

Here we provide approximate performance numbers for DKM using this codebase. Note that the randomness involved in geometry estimation means that the numbers are not exact. (+- 0.5 typically)

HPatches

To evaluate on HPatches Homography Estimation, run:

from dkm import dkm_base
from dkm.benchmarks import HpatchesHomogBenchmark

model = dkm_base(pretrained=True, version="v11")
homog_benchmark = HpatchesHomogBenchmark("data/hpatches")
homog_benchmark.benchmark_hpatches(model)

Results

HPatches Homography Estimation

AUC
@3px @5px @10px
LoFTR (CVPR'21) 65.9 75.6 84.6
DKM (Ours) 71.2 80.6 88.7

Scannet Pose Estimation

Here we compare the performance on Scannet of models not trained on Scannet. (For reference we also include the version LoFTR specifically trained on Scannet)

AUC mAP
@5 @10 @20 @5 @10 @20
SuperGlue (CVPR'20) Trained on Megadepth 16.16 33.81 51.84 - - -
LoFTR (CVPR'21) Trained on Megadepth 16.88 33.62 50.62 - - -
LoFTR (CVPR'21) Trained on Scannet 22.06 40.8 57.62 - - -
PDCNet (CVPR'21) Trained on Megadepth 17.70 35.02 51.75 39.93 50.17 60.87
PDCNet+ (Arxiv) Trained on Megadepth 19.02 36.90 54.25 42.93 53.13 63.95
DKM (Ours) Trained on Megadepth 22.3 42.0 60.2 48.4 59.5 70.3
DKM (Ours) Trained on Megadepth Square root Confidence Sampling 22.9 43.6 61.4 51.2 62.1 72.0

Yfcc100m Pose Estimation

Here we compare to recent methods using a single forward pass. PDC-Net+ using multiple passes comes closer to our method, reaching AUC-5 of 37.51. However, comparing to that method is somewhat unfair as their inference is much slower.

AUC mAP
@5 @10 @20 @5 @10 @20
PDCNet (CVPR'21) 32.21 52.61 70.13 60.52 70.91 80.30
PDCNet+ (Arxiv) 34.76 55.37 72.55 63.93 73.81 82.74
DKM (Ours) 40.0 60.2 76.2 69.8 78.5 86.1

TODO

  • Add Model Code
  • Upload Pretrained Models
  • Add HPatches Homography Benchmark
  • Add More Benchmarks

Acknowledgement

We have used code and been inspired by (among others) https://github.com/PruneTruong/DenseMatching , https://github.com/zju3dv/LoFTR , and https://github.com/GrumpyZhou/patch2pix

BibTeX

If you find our models useful, please consider citing our paper!

@article{edstedt2022deep,
  title={Deep Kernelized Dense Geometric Matching},
  author={Edstedt, Johan and Wadenb{\"a}ck, M{\aa}rten and Felsberg, Michael},
  journal={arXiv preprint arXiv:2202.00667},
  year={2022}
}
Owner
Johan Edstedt
PhD Student at CVL LiU.
Johan Edstedt
The implementation for the SportsCap (IJCV 2021)

SportsCap: Monocular 3D Human Motion Capture and Fine-grained Understanding in Challenging Sports Videos ProjectPage | Paper | Video | Dataset (Part01

Chen Xin 79 Dec 16, 2022
Official repository for the paper "GN-Transformer: Fusing AST and Source Code information in Graph Networks".

GN-Transformer AST This is the official repository for the paper "GN-Transformer: Fusing AST and Source Code information in Graph Networks". Data Prep

Cheng Jun-Yan 10 Nov 26, 2022
A PyTorch Implementation of the Luna: Linear Unified Nested Attention

Unofficial PyTorch implementation of Luna: Linear Unified Nested Attention The quadratic computational and memory complexities of the Transformer’s at

Soohwan Kim 32 Nov 07, 2022
Individual Tree Crown classification on WorldView-2 Images using Autoencoder -- Group 9 Weak learners - Final Project (Machine Learning 2020 Course)

Created by Olga Sutyrina, Sarah Elemili, Abduragim Shtanchaev and Artur Bille Individual Tree Crown classification on WorldView-2 Images using Autoenc

2 Dec 08, 2022
Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021)

PGpoints Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021) Hyeontae Son, Young Min Kim Pre

Hyeontae Son 9 Jun 06, 2022
Multi-task yolov5 with detection and segmentation based on yolov5

YOLOv5DS Multi-task yolov5 with detection and segmentation based on yolov5(branch v6.0) decoupled head anchor free segmentation head README中文 Ablation

150 Dec 30, 2022
Large scale PTM - PPI relation extraction

Large-scale protein-protein post-translational modification extraction with distant supervision and confidence calibrated BioBERT The silver standard

1 Feb 25, 2022
pytorch, hand(object) detect ,yolo v5,手检测

YOLO V5 物体检测,包括手部检测。 项目介绍 手部检测 手部检测示例如下 : 视频示例: 项目配置 作者开发环境: Python 3.7 PyTorch = 1.5.1 数据集 手部检测数据集 该项目数据集采用 TV-Hand 和 COCO-Hand (COCO-Hand-Big 部分) 进

Eric.Lee 11 Dec 20, 2022
For IBM Quantum Challenge 2021 (May 20 - 26)

IBM Quantum Challenge 2021 Introduction Commemorating the 40-year anniversary of the Physics of Computation conference, and 5-year anniversary of IBM

Qiskit Community 140 Jan 01, 2023
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2

Microsoft 29 Dec 29, 2022
Distributed Asynchronous Hyperparameter Optimization in Python

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

6.5k Jan 01, 2023
League of Legends Reinforcement Learning Environment (LoLRLE) multiple training scenarios using PPO.

League of Legends Reinforcement Learning Environment (LoLRLE) About This repo contains code to train an agent to play league of legends in a distribut

2 Aug 19, 2022
Using python and scikit-learn to make stock predictions

MachineLearningStocks in python: a starter project and guide EDIT as of Feb 2021: MachineLearningStocks is no longer actively maintained MachineLearni

Robert Martin 1.3k Dec 29, 2022
Simple codebase for flexible neural net training

neural-modular Simple codebase for flexible neural net training. Allows for seamless exchange of models, dataset, and optimizers. Uses hydra for confi

Jannik Kossen 7 Apr 05, 2022
Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting

Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting Note: You can find here the accompanying seq2seq RNN forecas

Guillaume Chevalier 1k Dec 25, 2022
This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to generate a dynamic forecast from your own data.

📈 Automated Time Series Forecasting Background: This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to gene

Zach Renwick 42 Jan 04, 2023
Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection

Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection abstract:Unlike 2D object detection where all RoI featur

DK. Zhang 2 Oct 07, 2022
Galileo library for large scale graph training by JD

近年来,图计算在搜索、推荐和风控等场景中获得显著的效果,但也面临超大规模异构图训练,与现有的深度学习框架Tensorflow和PyTorch结合等难题。 Galileo(伽利略)是一个图深度学习框架,具备超大规模、易使用、易扩展、高性能、双后端等优点,旨在解决超大规模图算法在工业级场景的落地难题,提

JD Galileo Team 128 Nov 29, 2022
Decision Transformer: A brand new Offline RL Pattern

DecisionTransformer_StepbyStep Intro Decision Transformer: A brand new Offline RL Pattern. 这是关于NeurIPS 2021 热门论文Decision Transformer的复现。 👍 原文地址: Deci

Irving 14 Nov 22, 2022
LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant Self-At

OxCSML (Oxford Computational Statistics and Machine Learning) 50 Dec 28, 2022