Taming Transformers for High-Resolution Image Synthesis

Overview

Taming Transformers for High-Resolution Image Synthesis

CVPR 2021 (Oral)

teaser

Taming Transformers for High-Resolution Image Synthesis
Patrick Esser*, Robin Rombach*, Björn Ommer
* equal contribution

tl;dr We combine the efficiancy of convolutional approaches with the expressivity of transformers by introducing a convolutional VQGAN, which learns a codebook of context-rich visual parts, whose composition is modeled with an autoregressive transformer.

teaser arXiv | BibTeX | Project Page

News

  • Thanks to rom1504 it is now easy to train a VQGAN on your own datasets.
  • Included a bugfix for the quantizer. For backward compatibility it is disabled by default (which corresponds to always training with beta=1.0). Use legacy=False in the quantizer config to enable it. Thanks richcmwang and wcshin-git!
  • Our paper received an update: See https://arxiv.org/abs/2012.09841v3 and the corresponding changelog.
  • Added a pretrained, 1.4B transformer model trained for class-conditional ImageNet synthesis, which obtains state-of-the-art FID scores among autoregressive approaches and outperforms BigGAN.
  • Added pretrained, unconditional models on FFHQ and CelebA-HQ.
  • Added accelerated sampling via caching of keys/values in the self-attention operation, used in scripts/sample_fast.py.
  • Added a checkpoint of a VQGAN trained with f8 compression and Gumbel-Quantization. See also our updated reconstruction notebook.
  • We added a colab notebook which compares two VQGANs and OpenAI's DALL-E. See also this section.
  • We now include an overview of pretrained models in Tab.1. We added models for COCO and ADE20k.
  • The streamlit demo now supports image completions.
  • We now include a couple of examples from the D-RIN dataset so you can run the D-RIN demo without preparing the dataset first.
  • You can now jump right into sampling with our Colab quickstart notebook.

Requirements

A suitable conda environment named taming can be created and activated with:

conda env create -f environment.yaml
conda activate taming

Overview of pretrained models

The following table provides an overview of all models that are currently available. FID scores were evaluated using torch-fidelity. For reference, we also include a link to the recently released autoencoder of the DALL-E model. See the corresponding colab notebook for a comparison and discussion of reconstruction capabilities.

Dataset FID vs train FID vs val Link Samples (256x256) Comments
FFHQ (f=16) 9.6 -- ffhq_transformer ffhq_samples
CelebA-HQ (f=16) 10.2 -- celebahq_transformer celebahq_samples
ADE20K (f=16) -- 35.5 ade20k_transformer ade20k_samples.zip [2k] evaluated on val split (2k images)
COCO-Stuff (f=16) -- 20.4 coco_transformer coco_samples.zip [5k] evaluated on val split (5k images)
ImageNet (cIN) (f=16) 15.98/15.78/6.59/5.88/5.20 -- cin_transformer cin_samples different decoding hyperparameters
FacesHQ (f=16) -- -- faceshq_transformer
S-FLCKR (f=16) -- -- sflckr
D-RIN (f=16) -- -- drin_transformer
VQGAN ImageNet (f=16), 1024 10.54 7.94 vqgan_imagenet_f16_1024 reconstructions Reconstruction-FIDs.
VQGAN ImageNet (f=16), 16384 7.41 4.98 vqgan_imagenet_f16_16384 reconstructions Reconstruction-FIDs.
VQGAN OpenImages (f=8), 8192, GumbelQuantization 3.24 1.49 vqgan_gumbel_f8 --- Reconstruction-FIDs.
DALL-E dVAE (f=8), 8192, GumbelQuantization 33.88 32.01 https://github.com/openai/DALL-E reconstructions Reconstruction-FIDs.

Running pretrained models

The commands below will start a streamlit demo which supports sampling at different resolutions and image completions. To run a non-interactive version of the sampling process, replace streamlit run scripts/sample_conditional.py -- by python scripts/make_samples.py --outdir <path_to_write_samples_to> and keep the remaining command line arguments.

To sample from unconditional or class-conditional models, run python scripts/sample_fast.py -r <path/to/config_and_checkpoint>. We describe below how to use this script to sample from the ImageNet, FFHQ, and CelebA-HQ models, respectively.

S-FLCKR

teaser

You can also run this model in a Colab notebook, which includes all necessary steps to start sampling.

Download the 2020-11-09T13-31-51_sflckr folder and place it into logs. Then, run

streamlit run scripts/sample_conditional.py -- -r logs/2020-11-09T13-31-51_sflckr/

ImageNet

teaser

Download the 2021-04-03T19-39-50_cin_transformer folder and place it into logs. Sampling from the class-conditional ImageNet model does not require any data preparation. To produce 50 samples for each of the 1000 classes of ImageNet, with k=600 for top-k sampling, p=0.92 for nucleus sampling and temperature t=1.0, run

python scripts/sample_fast.py -r logs/2021-04-03T19-39-50_cin_transformer/ -n 50 -k 600 -t 1.0 -p 0.92 --batch_size 25   

To restrict the model to certain classes, provide them via the --classes argument, separated by commas. For example, to sample 50 ostriches, border collies and whiskey jugs, run

python scripts/sample_fast.py -r logs/2021-04-03T19-39-50_cin_transformer/ -n 50 -k 600 -t 1.0 -p 0.92 --batch_size 25 --classes 9,232,901   

We recommended to experiment with the autoregressive decoding parameters (top-k, top-p and temperature) for best results.

FFHQ/CelebA-HQ

Download the 2021-04-23T18-19-01_ffhq_transformer and 2021-04-23T18-11-19_celebahq_transformer folders and place them into logs. Again, sampling from these unconditional models does not require any data preparation. To produce 50000 samples, with k=250 for top-k sampling, p=1.0 for nucleus sampling and temperature t=1.0, run

python scripts/sample_fast.py -r logs/2021-04-23T18-19-01_ffhq_transformer/   

for FFHQ and

python scripts/sample_fast.py -r logs/2021-04-23T18-11-19_celebahq_transformer/   

to sample from the CelebA-HQ model. For both models it can be advantageous to vary the top-k/top-p parameters for sampling.

FacesHQ

teaser

Download 2020-11-13T21-41-45_faceshq_transformer and place it into logs. Follow the data preparation steps for CelebA-HQ and FFHQ. Run

streamlit run scripts/sample_conditional.py -- -r logs/2020-11-13T21-41-45_faceshq_transformer/

D-RIN

teaser

Download 2020-11-20T12-54-32_drin_transformer and place it into logs. To run the demo on a couple of example depth maps included in the repository, run

streamlit run scripts/sample_conditional.py -- -r logs/2020-11-20T12-54-32_drin_transformer/ --ignore_base_data data="{target: main.DataModuleFromConfig, params: {batch_size: 1, validation: {target: taming.data.imagenet.DRINExamples}}}"

To run the demo on the complete validation set, first follow the data preparation steps for ImageNet and then run

streamlit run scripts/sample_conditional.py -- -r logs/2020-11-20T12-54-32_drin_transformer/

COCO

Download 2021-01-20T16-04-20_coco_transformer and place it into logs. To run the demo on a couple of example segmentation maps included in the repository, run

streamlit run scripts/sample_conditional.py -- -r logs/2021-01-20T16-04-20_coco_transformer/ --ignore_base_data data="{target: main.DataModuleFromConfig, params: {batch_size: 1, validation: {target: taming.data.coco.Examples}}}"

ADE20k

Download 2020-11-20T21-45-44_ade20k_transformer and place it into logs. To run the demo on a couple of example segmentation maps included in the repository, run

streamlit run scripts/sample_conditional.py -- -r logs/2020-11-20T21-45-44_ade20k_transformer/ --ignore_base_data data="{target: main.DataModuleFromConfig, params: {batch_size: 1, validation: {target: taming.data.ade20k.Examples}}}"

Training on custom data

Training on your own dataset can be beneficial to get better tokens and hence better images for your domain. Those are the steps to follow to make this work:

  1. install the repo with conda env create -f environment.yaml, conda activate taming and pip install -e .
  2. put your .jpg files in a folder your_folder
  3. create 2 text files a xx_train.txt and xx_test.txt that point to the files in your training and test set respectively (for example find $(pwd)/your_folder -name "*.jpg" > train.txt)
  4. adapt configs/custom_vqgan.yaml to point to these 2 files
  5. run python main.py --base configs/custom_vqgan.yaml -t True --gpus 0,1 to train on two GPUs. Use --gpus 0, (with a trailing comma) to train on a single GPU.

Data Preparation

ImageNet

The code will try to download (through Academic Torrents) and prepare ImageNet the first time it is used. However, since ImageNet is quite large, this requires a lot of disk space and time. If you already have ImageNet on your disk, you can speed things up by putting the data into ${XDG_CACHE}/autoencoders/data/ILSVRC2012_{split}/data/ (which defaults to ~/.cache/autoencoders/data/ILSVRC2012_{split}/data/), where {split} is one of train/validation. It should have the following structure:

${XDG_CACHE}/autoencoders/data/ILSVRC2012_{split}/data/
├── n01440764
│   ├── n01440764_10026.JPEG
│   ├── n01440764_10027.JPEG
│   ├── ...
├── n01443537
│   ├── n01443537_10007.JPEG
│   ├── n01443537_10014.JPEG
│   ├── ...
├── ...

If you haven't extracted the data, you can also place ILSVRC2012_img_train.tar/ILSVRC2012_img_val.tar (or symlinks to them) into ${XDG_CACHE}/autoencoders/data/ILSVRC2012_train/ / ${XDG_CACHE}/autoencoders/data/ILSVRC2012_validation/, which will then be extracted into above structure without downloading it again. Note that this will only happen if neither a folder ${XDG_CACHE}/autoencoders/data/ILSVRC2012_{split}/data/ nor a file ${XDG_CACHE}/autoencoders/data/ILSVRC2012_{split}/.ready exist. Remove them if you want to force running the dataset preparation again.

You will then need to prepare the depth data using MiDaS. Create a symlink data/imagenet_depth pointing to a folder with two subfolders train and val, each mirroring the structure of the corresponding ImageNet folder described above and containing a png file for each of ImageNet's JPEG files. The png encodes float32 depth values obtained from MiDaS as RGBA images. We provide the script scripts/extract_depth.py to generate this data. Please note that this script uses MiDaS via PyTorch Hub. When we prepared the data, the hub provided the MiDaS v2.0 version, but now it provides a v2.1 version. We haven't tested our models with depth maps obtained via v2.1 and if you want to make sure that things work as expected, you must adjust the script to make sure it explicitly uses v2.0!

CelebA-HQ

Create a symlink data/celebahq pointing to a folder containing the .npy files of CelebA-HQ (instructions to obtain them can be found in the PGGAN repository).

FFHQ

Create a symlink data/ffhq pointing to the images1024x1024 folder obtained from the FFHQ repository.

S-FLCKR

Unfortunately, we are not allowed to distribute the images we collected for the S-FLCKR dataset and can therefore only give a description how it was produced. There are many resources on collecting images from the web to get started. We collected sufficiently large images from flickr (see data/flickr_tags.txt for a full list of tags used to find images) and various subreddits (see data/subreddits.txt for all subreddits that were used). Overall, we collected 107625 images, and split them randomly into 96861 training images and 10764 validation images. We then obtained segmentation masks for each image using DeepLab v2 trained on COCO-Stuff. We used a PyTorch reimplementation and include an example script for this process in scripts/extract_segmentation.py.

COCO

Create a symlink data/coco containing the images from the 2017 split in train2017 and val2017, and their annotations in annotations. Files can be obtained from the COCO webpage. In addition, we use the Stuff+thing PNG-style annotations on COCO 2017 trainval annotations from COCO-Stuff, which should be placed under data/cocostuffthings.

ADE20k

Create a symlink data/ade20k_root containing the contents of ADEChallengeData2016.zip from the MIT Scene Parsing Benchmark.

Training models

FacesHQ

Train a VQGAN with

python main.py --base configs/faceshq_vqgan.yaml -t True --gpus 0,

Then, adjust the checkpoint path of the config key model.params.first_stage_config.params.ckpt_path in configs/faceshq_transformer.yaml (or download 2020-11-09T13-33-36_faceshq_vqgan and place into logs, which corresponds to the preconfigured checkpoint path), then run

python main.py --base configs/faceshq_transformer.yaml -t True --gpus 0,

D-RIN

Train a VQGAN on ImageNet with

python main.py --base configs/imagenet_vqgan.yaml -t True --gpus 0,

or download a pretrained one from 2020-09-23T17-56-33_imagenet_vqgan and place under logs. If you trained your own, adjust the path in the config key model.params.first_stage_config.params.ckpt_path of configs/drin_transformer.yaml.

Train a VQGAN on Depth Maps of ImageNet with

python main.py --base configs/imagenetdepth_vqgan.yaml -t True --gpus 0,

or download a pretrained one from 2020-11-03T15-34-24_imagenetdepth_vqgan and place under logs. If you trained your own, adjust the path in the config key model.params.cond_stage_config.params.ckpt_path of configs/drin_transformer.yaml.

To train the transformer, run

python main.py --base configs/drin_transformer.yaml -t True --gpus 0,

More Resources

Comparing Different First Stage Models

The reconstruction and compression capabilities of different fist stage models can be analyzed in this colab notebook. In particular, the notebook compares two VQGANs with a downsampling factor of f=16 for each and codebook dimensionality of 1024 and 16384, a VQGAN with f=8 and 8192 codebook entries and the discrete autoencoder of OpenAI's DALL-E (which has f=8 and 8192 codebook entries). firststages1 firststages2

Other

Text-to-Image Optimization via CLIP

VQGAN has been successfully used as an image generator guided by the CLIP model, both for pure image generation from scratch and image-to-image translation. We recommend the following notebooks/videos/resources:

txt2img

Text prompt: 'A bird drawn by a child'

Shout-outs

Thanks to everyone who makes their code and models available. In particular,

BibTeX

@misc{esser2020taming,
      title={Taming Transformers for High-Resolution Image Synthesis}, 
      author={Patrick Esser and Robin Rombach and Björn Ommer},
      year={2020},
      eprint={2012.09841},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
CompVis Heidelberg
Computer Vision research group at the Ruprecht-Karls-University Heidelberg
CompVis Heidelberg
Learning nonlinear operators via DeepONet

DeepONet: Learning nonlinear operators The source code for the paper Learning nonlinear operators via DeepONet based on the universal approximation th

Lu Lu 239 Jan 02, 2023
Tandem Mass Spectrum Prediction with Graph Transformers

MassFormer This is the original implementation of MassFormer, a graph transformer for small molecule MS/MS prediction. Check out the preprint on arxiv

Röst Lab 13 Oct 27, 2022
Bald-to-Hairy Translation Using CycleGAN

GANiry: Bald-to-Hairy Translation Using CycleGAN Official PyTorch implementation of GANiry. GANiry: Bald-to-Hairy Translation Using CycleGAN, Fidan Sa

Fidan Samet 10 Oct 27, 2022
Automatic meme generation model using Tensorflow Keras.

Memefly You can find the project at MemeflyAI. Contributors Nick Buukhalter Harsh Desai Han Lee Project Overview Trello Board Product Canvas Automatic

BloomTech Labs 2 Jan 13, 2022
Irrigation controller for Home Assistant

Irrigation Unlimited This integration is for irrigation systems large and small. It can offer some complex arrangements without large and messy script

Robert Cook 176 Jan 02, 2023
Pytorch implementation of our method for regularizing nerual radiance fields for few-shot neural volume rendering.

InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering Pytorch implementation of our method for regularizing nerual radiance fields f

106 Jan 06, 2023
This is a file about Unet implemented in Pytorch

Unet this is an implemetion of Unet in Pytorch and it's architecture is as follows which is the same with paper of Unet component of Unet Convolution

Dragon 1 Dec 03, 2021
FlingBot: The Unreasonable Effectiveness of Dynamic Manipulations for Cloth Unfolding

This repository contains code for training and evaluating FlingBot in both simulation and real-world settings on a dual-UR5 robot arm setup for Ubuntu 18.04

Columbia Artificial Intelligence and Robotics Lab 70 Dec 06, 2022
Machine learning, in numpy

numpy-ml Ever wish you had an inefficient but somewhat legible collection of machine learning algorithms implemented exclusively in NumPy? No? Install

David Bourgin 11.6k Dec 30, 2022
[ICRA 2022] An opensource framework for cooperative detection. Official implementation for OPV2V.

OpenCOOD OpenCOOD is an Open COOperative Detection framework for autonomous driving. It is also the official implementation of the ICRA 2022 paper OPV

Runsheng Xu 322 Dec 23, 2022
Pytorch implementation of forward and inverse Haar Wavelets 2D

Pytorch implementation of forward and inverse Haar Wavelets 2D

Sergei Belousov 9 Oct 30, 2022
[CVPR 2021] Unsupervised Degradation Representation Learning for Blind Super-Resolution

DASR Pytorch implementation of "Unsupervised Degradation Representation Learning for Blind Super-Resolution", CVPR 2021 [arXiv] Overview Requirements

Longguang Wang 318 Dec 24, 2022
LONG-TERM SERIES FORECASTING WITH QUERYSELECTOR – EFFICIENT MODEL OF SPARSEATTENTION

Query Selector Here you can find code and data loaders for the paper https://arxiv.org/pdf/2107.08687v1.pdf . Query Selector is a novel approach to sp

MORAI 62 Dec 17, 2022
Age Progression/Regression by Conditional Adversarial Autoencoder

Age Progression/Regression by Conditional Adversarial Autoencoder (CAAE) TensorFlow implementation of the algorithm in the paper Age Progression/Regre

Zhifei Zhang 603 Dec 22, 2022
tensorflow code for inverse face rendering

InverseFaceRender This is tensorflow code for our project: Learning Inverse Rendering of Faces from Real-world Videos. (https://arxiv.org/abs/2003.120

Yuda Qiu 18 Nov 16, 2022
NumQMBasic - A mini-course offered to Undergrad physics students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 35 Dec 05, 2022
Implementation of Auto-Conditioned Recurrent Networks for Extended Complex Human Motion Synthesis

acLSTM_motion This folder contains an implementation of acRNN for the CMU motion database written in Pytorch. See the following links for more backgro

Yi_Zhou 61 Sep 07, 2022
A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor

Phase-SLAM A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor This open source is written by MATLAB Run Mode Open

Xi Zheng 14 Dec 19, 2022
CoaT: Co-Scale Conv-Attentional Image Transformers

CoaT: Co-Scale Conv-Attentional Image Transformers Introduction This repository contains the official code and pretrained models for CoaT: Co-Scale Co

mlpc-ucsd 191 Dec 03, 2022