Taming Transformers for High-Resolution Image Synthesis

Overview

Taming Transformers for High-Resolution Image Synthesis

CVPR 2021 (Oral)

teaser

Taming Transformers for High-Resolution Image Synthesis
Patrick Esser*, Robin Rombach*, Björn Ommer
* equal contribution

tl;dr We combine the efficiancy of convolutional approaches with the expressivity of transformers by introducing a convolutional VQGAN, which learns a codebook of context-rich visual parts, whose composition is modeled with an autoregressive transformer.

teaser arXiv | BibTeX | Project Page

News

  • Thanks to rom1504 it is now easy to train a VQGAN on your own datasets.
  • Included a bugfix for the quantizer. For backward compatibility it is disabled by default (which corresponds to always training with beta=1.0). Use legacy=False in the quantizer config to enable it. Thanks richcmwang and wcshin-git!
  • Our paper received an update: See https://arxiv.org/abs/2012.09841v3 and the corresponding changelog.
  • Added a pretrained, 1.4B transformer model trained for class-conditional ImageNet synthesis, which obtains state-of-the-art FID scores among autoregressive approaches and outperforms BigGAN.
  • Added pretrained, unconditional models on FFHQ and CelebA-HQ.
  • Added accelerated sampling via caching of keys/values in the self-attention operation, used in scripts/sample_fast.py.
  • Added a checkpoint of a VQGAN trained with f8 compression and Gumbel-Quantization. See also our updated reconstruction notebook.
  • We added a colab notebook which compares two VQGANs and OpenAI's DALL-E. See also this section.
  • We now include an overview of pretrained models in Tab.1. We added models for COCO and ADE20k.
  • The streamlit demo now supports image completions.
  • We now include a couple of examples from the D-RIN dataset so you can run the D-RIN demo without preparing the dataset first.
  • You can now jump right into sampling with our Colab quickstart notebook.

Requirements

A suitable conda environment named taming can be created and activated with:

conda env create -f environment.yaml
conda activate taming

Overview of pretrained models

The following table provides an overview of all models that are currently available. FID scores were evaluated using torch-fidelity. For reference, we also include a link to the recently released autoencoder of the DALL-E model. See the corresponding colab notebook for a comparison and discussion of reconstruction capabilities.

Dataset FID vs train FID vs val Link Samples (256x256) Comments
FFHQ (f=16) 9.6 -- ffhq_transformer ffhq_samples
CelebA-HQ (f=16) 10.2 -- celebahq_transformer celebahq_samples
ADE20K (f=16) -- 35.5 ade20k_transformer ade20k_samples.zip [2k] evaluated on val split (2k images)
COCO-Stuff (f=16) -- 20.4 coco_transformer coco_samples.zip [5k] evaluated on val split (5k images)
ImageNet (cIN) (f=16) 15.98/15.78/6.59/5.88/5.20 -- cin_transformer cin_samples different decoding hyperparameters
FacesHQ (f=16) -- -- faceshq_transformer
S-FLCKR (f=16) -- -- sflckr
D-RIN (f=16) -- -- drin_transformer
VQGAN ImageNet (f=16), 1024 10.54 7.94 vqgan_imagenet_f16_1024 reconstructions Reconstruction-FIDs.
VQGAN ImageNet (f=16), 16384 7.41 4.98 vqgan_imagenet_f16_16384 reconstructions Reconstruction-FIDs.
VQGAN OpenImages (f=8), 8192, GumbelQuantization 3.24 1.49 vqgan_gumbel_f8 --- Reconstruction-FIDs.
DALL-E dVAE (f=8), 8192, GumbelQuantization 33.88 32.01 https://github.com/openai/DALL-E reconstructions Reconstruction-FIDs.

Running pretrained models

The commands below will start a streamlit demo which supports sampling at different resolutions and image completions. To run a non-interactive version of the sampling process, replace streamlit run scripts/sample_conditional.py -- by python scripts/make_samples.py --outdir <path_to_write_samples_to> and keep the remaining command line arguments.

To sample from unconditional or class-conditional models, run python scripts/sample_fast.py -r <path/to/config_and_checkpoint>. We describe below how to use this script to sample from the ImageNet, FFHQ, and CelebA-HQ models, respectively.

S-FLCKR

teaser

You can also run this model in a Colab notebook, which includes all necessary steps to start sampling.

Download the 2020-11-09T13-31-51_sflckr folder and place it into logs. Then, run

streamlit run scripts/sample_conditional.py -- -r logs/2020-11-09T13-31-51_sflckr/

ImageNet

teaser

Download the 2021-04-03T19-39-50_cin_transformer folder and place it into logs. Sampling from the class-conditional ImageNet model does not require any data preparation. To produce 50 samples for each of the 1000 classes of ImageNet, with k=600 for top-k sampling, p=0.92 for nucleus sampling and temperature t=1.0, run

python scripts/sample_fast.py -r logs/2021-04-03T19-39-50_cin_transformer/ -n 50 -k 600 -t 1.0 -p 0.92 --batch_size 25   

To restrict the model to certain classes, provide them via the --classes argument, separated by commas. For example, to sample 50 ostriches, border collies and whiskey jugs, run

python scripts/sample_fast.py -r logs/2021-04-03T19-39-50_cin_transformer/ -n 50 -k 600 -t 1.0 -p 0.92 --batch_size 25 --classes 9,232,901   

We recommended to experiment with the autoregressive decoding parameters (top-k, top-p and temperature) for best results.

FFHQ/CelebA-HQ

Download the 2021-04-23T18-19-01_ffhq_transformer and 2021-04-23T18-11-19_celebahq_transformer folders and place them into logs. Again, sampling from these unconditional models does not require any data preparation. To produce 50000 samples, with k=250 for top-k sampling, p=1.0 for nucleus sampling and temperature t=1.0, run

python scripts/sample_fast.py -r logs/2021-04-23T18-19-01_ffhq_transformer/   

for FFHQ and

python scripts/sample_fast.py -r logs/2021-04-23T18-11-19_celebahq_transformer/   

to sample from the CelebA-HQ model. For both models it can be advantageous to vary the top-k/top-p parameters for sampling.

FacesHQ

teaser

Download 2020-11-13T21-41-45_faceshq_transformer and place it into logs. Follow the data preparation steps for CelebA-HQ and FFHQ. Run

streamlit run scripts/sample_conditional.py -- -r logs/2020-11-13T21-41-45_faceshq_transformer/

D-RIN

teaser

Download 2020-11-20T12-54-32_drin_transformer and place it into logs. To run the demo on a couple of example depth maps included in the repository, run

streamlit run scripts/sample_conditional.py -- -r logs/2020-11-20T12-54-32_drin_transformer/ --ignore_base_data data="{target: main.DataModuleFromConfig, params: {batch_size: 1, validation: {target: taming.data.imagenet.DRINExamples}}}"

To run the demo on the complete validation set, first follow the data preparation steps for ImageNet and then run

streamlit run scripts/sample_conditional.py -- -r logs/2020-11-20T12-54-32_drin_transformer/

COCO

Download 2021-01-20T16-04-20_coco_transformer and place it into logs. To run the demo on a couple of example segmentation maps included in the repository, run

streamlit run scripts/sample_conditional.py -- -r logs/2021-01-20T16-04-20_coco_transformer/ --ignore_base_data data="{target: main.DataModuleFromConfig, params: {batch_size: 1, validation: {target: taming.data.coco.Examples}}}"

ADE20k

Download 2020-11-20T21-45-44_ade20k_transformer and place it into logs. To run the demo on a couple of example segmentation maps included in the repository, run

streamlit run scripts/sample_conditional.py -- -r logs/2020-11-20T21-45-44_ade20k_transformer/ --ignore_base_data data="{target: main.DataModuleFromConfig, params: {batch_size: 1, validation: {target: taming.data.ade20k.Examples}}}"

Training on custom data

Training on your own dataset can be beneficial to get better tokens and hence better images for your domain. Those are the steps to follow to make this work:

  1. install the repo with conda env create -f environment.yaml, conda activate taming and pip install -e .
  2. put your .jpg files in a folder your_folder
  3. create 2 text files a xx_train.txt and xx_test.txt that point to the files in your training and test set respectively (for example find $(pwd)/your_folder -name "*.jpg" > train.txt)
  4. adapt configs/custom_vqgan.yaml to point to these 2 files
  5. run python main.py --base configs/custom_vqgan.yaml -t True --gpus 0,1 to train on two GPUs. Use --gpus 0, (with a trailing comma) to train on a single GPU.

Data Preparation

ImageNet

The code will try to download (through Academic Torrents) and prepare ImageNet the first time it is used. However, since ImageNet is quite large, this requires a lot of disk space and time. If you already have ImageNet on your disk, you can speed things up by putting the data into ${XDG_CACHE}/autoencoders/data/ILSVRC2012_{split}/data/ (which defaults to ~/.cache/autoencoders/data/ILSVRC2012_{split}/data/), where {split} is one of train/validation. It should have the following structure:

${XDG_CACHE}/autoencoders/data/ILSVRC2012_{split}/data/
├── n01440764
│   ├── n01440764_10026.JPEG
│   ├── n01440764_10027.JPEG
│   ├── ...
├── n01443537
│   ├── n01443537_10007.JPEG
│   ├── n01443537_10014.JPEG
│   ├── ...
├── ...

If you haven't extracted the data, you can also place ILSVRC2012_img_train.tar/ILSVRC2012_img_val.tar (or symlinks to them) into ${XDG_CACHE}/autoencoders/data/ILSVRC2012_train/ / ${XDG_CACHE}/autoencoders/data/ILSVRC2012_validation/, which will then be extracted into above structure without downloading it again. Note that this will only happen if neither a folder ${XDG_CACHE}/autoencoders/data/ILSVRC2012_{split}/data/ nor a file ${XDG_CACHE}/autoencoders/data/ILSVRC2012_{split}/.ready exist. Remove them if you want to force running the dataset preparation again.

You will then need to prepare the depth data using MiDaS. Create a symlink data/imagenet_depth pointing to a folder with two subfolders train and val, each mirroring the structure of the corresponding ImageNet folder described above and containing a png file for each of ImageNet's JPEG files. The png encodes float32 depth values obtained from MiDaS as RGBA images. We provide the script scripts/extract_depth.py to generate this data. Please note that this script uses MiDaS via PyTorch Hub. When we prepared the data, the hub provided the MiDaS v2.0 version, but now it provides a v2.1 version. We haven't tested our models with depth maps obtained via v2.1 and if you want to make sure that things work as expected, you must adjust the script to make sure it explicitly uses v2.0!

CelebA-HQ

Create a symlink data/celebahq pointing to a folder containing the .npy files of CelebA-HQ (instructions to obtain them can be found in the PGGAN repository).

FFHQ

Create a symlink data/ffhq pointing to the images1024x1024 folder obtained from the FFHQ repository.

S-FLCKR

Unfortunately, we are not allowed to distribute the images we collected for the S-FLCKR dataset and can therefore only give a description how it was produced. There are many resources on collecting images from the web to get started. We collected sufficiently large images from flickr (see data/flickr_tags.txt for a full list of tags used to find images) and various subreddits (see data/subreddits.txt for all subreddits that were used). Overall, we collected 107625 images, and split them randomly into 96861 training images and 10764 validation images. We then obtained segmentation masks for each image using DeepLab v2 trained on COCO-Stuff. We used a PyTorch reimplementation and include an example script for this process in scripts/extract_segmentation.py.

COCO

Create a symlink data/coco containing the images from the 2017 split in train2017 and val2017, and their annotations in annotations. Files can be obtained from the COCO webpage. In addition, we use the Stuff+thing PNG-style annotations on COCO 2017 trainval annotations from COCO-Stuff, which should be placed under data/cocostuffthings.

ADE20k

Create a symlink data/ade20k_root containing the contents of ADEChallengeData2016.zip from the MIT Scene Parsing Benchmark.

Training models

FacesHQ

Train a VQGAN with

python main.py --base configs/faceshq_vqgan.yaml -t True --gpus 0,

Then, adjust the checkpoint path of the config key model.params.first_stage_config.params.ckpt_path in configs/faceshq_transformer.yaml (or download 2020-11-09T13-33-36_faceshq_vqgan and place into logs, which corresponds to the preconfigured checkpoint path), then run

python main.py --base configs/faceshq_transformer.yaml -t True --gpus 0,

D-RIN

Train a VQGAN on ImageNet with

python main.py --base configs/imagenet_vqgan.yaml -t True --gpus 0,

or download a pretrained one from 2020-09-23T17-56-33_imagenet_vqgan and place under logs. If you trained your own, adjust the path in the config key model.params.first_stage_config.params.ckpt_path of configs/drin_transformer.yaml.

Train a VQGAN on Depth Maps of ImageNet with

python main.py --base configs/imagenetdepth_vqgan.yaml -t True --gpus 0,

or download a pretrained one from 2020-11-03T15-34-24_imagenetdepth_vqgan and place under logs. If you trained your own, adjust the path in the config key model.params.cond_stage_config.params.ckpt_path of configs/drin_transformer.yaml.

To train the transformer, run

python main.py --base configs/drin_transformer.yaml -t True --gpus 0,

More Resources

Comparing Different First Stage Models

The reconstruction and compression capabilities of different fist stage models can be analyzed in this colab notebook. In particular, the notebook compares two VQGANs with a downsampling factor of f=16 for each and codebook dimensionality of 1024 and 16384, a VQGAN with f=8 and 8192 codebook entries and the discrete autoencoder of OpenAI's DALL-E (which has f=8 and 8192 codebook entries). firststages1 firststages2

Other

Text-to-Image Optimization via CLIP

VQGAN has been successfully used as an image generator guided by the CLIP model, both for pure image generation from scratch and image-to-image translation. We recommend the following notebooks/videos/resources:

txt2img

Text prompt: 'A bird drawn by a child'

Shout-outs

Thanks to everyone who makes their code and models available. In particular,

BibTeX

@misc{esser2020taming,
      title={Taming Transformers for High-Resolution Image Synthesis}, 
      author={Patrick Esser and Robin Rombach and Björn Ommer},
      year={2020},
      eprint={2012.09841},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
CompVis Heidelberg
Computer Vision research group at the Ruprecht-Karls-University Heidelberg
CompVis Heidelberg
Official PyTorch implementation of Spatial Dependency Networks.

Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling Đorđe Miladinović   Aleksandar Stanić   Stefan Bauer   Jürgen Schmid

Djordje Miladinovic 34 Jan 19, 2022
Implementation of ResMLP, an all MLP solution to image classification, in Pytorch

ResMLP - Pytorch Implementation of ResMLP, an all MLP solution to image classification out of Facebook AI, in Pytorch Install $ pip install res-mlp-py

Phil Wang 178 Dec 02, 2022
MLP-Like Vision Permutator for Visual Recognition (PyTorch)

Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition (arxiv) This is a Pytorch implementation of our paper. We present Vision

Qibin (Andrew) Hou 162 Nov 28, 2022
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

730 Jan 09, 2023
AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning

AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning AutoPentest-DRL is an automated penetration testing framework based o

Cyber Range Organization and Design Chair 217 Jan 01, 2023
What can linearized neural networks actually say about generalization?

What can linearized neural networks actually say about generalization? This is the source code to reproduce the experiments of the NeurIPS 2021 paper

gortizji 11 Dec 09, 2022
PURE: End-to-End Relation Extraction

PURE: End-to-End Relation Extraction This repository contains (PyTorch) code and pre-trained models for PURE (the Princeton University Relation Extrac

Princeton Natural Language Processing 657 Jan 09, 2023
A chemical analysis of lipophilicities & molecule drawings including ML

A chemical analysis of lipophilicity & molecule drawings including a bit of ML analysis. This is a simple project that includes two Jupyter files (one

Aurimas A. Nausėdas 7 Nov 22, 2022
113 Nov 28, 2022
Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness

Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness Code for Paper "Imbalanced Gradients: A Subtle Cause of Overestimated Adv

Hanxun Huang 11 Nov 30, 2022
Repo for our ICML21 paper Unsupervised Learning of Visual 3D Keypoints for Control

Unsupervised Learning of Visual 3D Keypoints for Control [Project Website] [Paper] Boyuan Chen1, Pieter Abbeel1, Deepak Pathak2 1UC Berkeley 2Carnegie

Boyuan Chen 34 Jul 22, 2022
Optimizing Deeper Transformers on Small Datasets

DT-Fixup Optimizing Deeper Transformers on Small Datasets Paper published in ACL 2021: arXiv Detailed instructions to replicate our results in the pap

16 Nov 14, 2022
Fast, modular reference implementation of Instance Segmentation and Object Detection algorithms in PyTorch.

Faster R-CNN and Mask R-CNN in PyTorch 1.0 maskrcnn-benchmark has been deprecated. Please see detectron2, which includes implementations for all model

Facebook Research 9k Jan 04, 2023
PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition.

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
Notebooks em Python para Métodos Eletromagnéticos

GeoSci Labs This is a repository of code used to power the notebooks and interactive examples for https://em.geosci.xyz and https://gpg.geosci.xyz. Th

Victor Cezar Tocantins 1 Nov 16, 2021
TensorFlow implementation of PHM (Parameterization of Hypercomplex Multiplication)

Parameterization of Hypercomplex Multiplications (PHM) This repository contains the TensorFlow implementation of PHM (Parameterization of Hypercomplex

Aston Zhang 9 Oct 26, 2022
DECA: Detailed Expression Capture and Animation (SIGGRAPH 2021)

DECA: Detailed Expression Capture and Animation (SIGGRAPH2021) input image, aligned reconstruction, animation with various poses & expressions This is

Yao Feng 1.5k Jan 02, 2023
Official Implementation of Domain-Aware Universal Style Transfer

Domain Aware Universal Style Transfer Official Pytorch Implementation of 'Domain Aware Universal Style Transfer' (ICCV 2021) Domain Aware Universal St

KibeomHong 80 Dec 30, 2022
BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search

BossNAS This repository contains PyTorch evaluation code, retraining code and pretrained models of our paper: BossNAS: Exploring Hybrid CNN-transforme

Changlin Li 127 Dec 26, 2022
Vehicles Counting using YOLOv4 + DeepSORT + Flask + Ngrok

A project for counting vehicles using YOLOv4 + DeepSORT + Flask + Ngrok

Duong Tran Thanh 37 Dec 16, 2022